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Chapter I.

Project Summary

1. Research Objectives

The ultimate goal of the project is to theoretically investigate the effect of nonequilibrium phase

transitions on vapor and vapor-gas bubble dynamics in acoustic fields to determine the j:easibility

of the measurement of the accommodation coej_cient using bubble dynamics in acoustic fields. The

technical objectives include:

1. Using a spherical model of a bubble in an isotropic acoustic field including thermal and

diffusion effects in the liquid and in the vapor, surface tension, liquid triscosity and com-

pressibility, evaluate the effect of nonequilibrium phase transitions on vapor and vapor-gas

bubble dynamics.

2. Evaluate the influence of the accommodation coe_cient on the bubble translational motion

in a standing acoustic waves and on rectified heat transfer.

3. Conduct a parametric study to evaluate the range of parameters which can be used in design

of an experimental setup for determination of the accommodation coe O_cient.

2. Summary of Research

The research effort has successfully achieved most the objectives set in the proposal:

• We developed a comprehensive model of a spherical bubble in an acoustic field including the

effects of nonequilibrium phase transitions, heat and mass transfer in the liquid and gaseous

phases, surface tension, liquid viscosity, and compressibility.

• We developed and implemented asymptotic and numerical methods for solution of the prob-

lem and incorporated them into codes convenient for parametric studies.

• We conducted parametric studies of vapor and vapor-gas bubble dynamics in acoustic fields

and determined conditions in which the effect of nonequilibrium phase transitions on bubble

dynamics is appreciable and can be used for measurements of the accommodation coefficient.



We uncoveredseveralphysicaleffectswhichcanbeusedfor determinationof the accommo-
dation coefficientusingbubbledynamics.Theseinclude, for example,low frequencybubble
meanposition/radius oscillationsin standingacousticwaves,the possibility of stabilization
of the meanbubble radius in acousticfields,the existenceof multiple thresholdand stable
equilibrium states of the mean vapor bubble radius in acoustic fields and their dependence

on the accommodation coefficient, parameters of the acoustic field, and ambient conditions.

It is commonly thought that nonequilibrittm phase transition affects bubble dynamics only

in high-frequency fields (at least tens of kilohertz for water; some authors considered even

the megahertz range). We, however, found that the range of bubble dynamics sensiti_ty

depends on the bubble size, initial conditions, content of the inert component, and other

parameters, which can be selected in experiments to provide measurements over a broad

range of acoustic frequencies, and ambient conditions. We found that nonequilibrium phase

transitions may affect the dynamics of vapor and vapor-gas bubbles in a broad range of

acoustic frequencies and bubble sizes (for water at atmospheric pressure, 1-100 kHz and

10-10000/zm, respectively).

We found a strong effect of initial conditions on rectified heat transfer for an initial stage

that can span millions of cycles of bubble oscillations.

We found that gravity can substantially affect the bubble dynamics in acoustic fields.

Regimes of bubble dynamics in standing waves substantially depend on the magnitude of

gravity. Reduced gravity in general is beneficial for measurements of the accomodation

coefficient.

3. Problems and Future RgzD Objectives

The following research issues still need to be addressed prior to designing an instrument for
measurement of the accommodation coefficient.

1. Validation of the developed codes by comparison with available experimental data.

2. Modification of the developed codes to include convective heat transfer due to bubble trans-

lational motion in a standing wave.

3. In the space of parameters, determination of the regions of spherical shape stability/applicability

of the spherical bubble theory.

4. Evaluation of the effect of bubble nonsphericity on the measurements of the accommodation
coefficient.

5. Determination of the optimal parameters/regimes for measurement of the accommodation
coefficient.



4. Potential Applications

The research seeks to develop a practical diagnostic technique for measurement of the accommo-

dation coefficient of various substances in various conditions. The technique is based on measure-

ments of bubble size and position in acoustic fields and subsequent processing of the results of

measurements. Dependencies of the accommodation coefficient on temperature, surface contam-

ination, and other parameters can be established using the proposed technique and utilized for

diagnostic purposes and characterization of liquid/vapor interfaces. Measurement of the accom-

modation coefficient is important for proper modeling of many natural and technological processes

including boiling of liquid metals, film boiling, vacuum vaporization, explosions, aerosol mechanics,

meteorology, and others.





Chapter II.

Introduction

Nonequilibrium liquid/vapor phase transformations occur in a wide variety of natural and tech-

nological processes. In addition to the problem of interest here, these include evaporation and

condensation of high velocity jets [8], film condensation [9], growth of small droplets in clouds

[10, 11], sound propagation in vapor-droplet systems [12, 13], nonlinear dynamics of vapor bub-

bles and condensed droplets in acoustic fields [14, 2], and laser vaporization [15].

Studies of processes with non-equilibrium phase transitions are of great practical importance,

because in many advanced technologies it is necessary to predict and control material behavior

under extreme conditions. However, the use of most theories and models is limited by the lack of

reliable data on material properties, especially coefficients describing nonequilibrium vapor/liquid

transformations. Such data can be obtained only from experiments. The experimental facilities

used for these measurements are usually complex, expensive, and do not provide repeatable re-

sults. For example, data reported on the accommodation coefficient for water obtained by various

experimenters during this century vary from 6-10 -3 to 1, and experimental data for mercury are

in the range from 5.10 -4 to 1.

The reason for such a wide range of results is that the accommodation coefficient is very

sensitive to the conditions of the experiment. In order to address this shortcoming,:-the dependence

of the accommodation coefficient on temperature, on the concentration of other species, and on

other parameters near the interface should be determined. If a reliable and accurate accomodation

coefficient measurement technique is available, such dependencies can be found experimentally and

tabulated. This will provide a firm basis for modeling of nonequilibrium phase transitions.

In recent microgravity experiments conducted by the European Space Agency using the Ger-

man drop tower and the Bubble, Drop, and Particle Unit ESA multi-user facility for fluid physics

experiments operating onboard IML2 (1994) and LMS (1996), an attempt to determine of the ac-

commodation coefficient of refrigerants Rll and Rll3 was made by Picker and Straub [16] using

observation of vapor bubble dynamics. Typical times of bubble radius variations in these exper-

iments were of order 1 s. These times are several orders of magnitude larger than the interface

temperature relaxation times and the evaporation/condensation in these experiments occurred in

almost equilibrium conditions (no dependence on the accommodation coefficient). This explains

the great dispersion of the values obtained for the accommodation coefficient (from 0.9-10 -2 to 0.7

for Rll and from 8-10 -3 to 1 for Rll3 [16]).



It is known that during eachcycleof bubbleoscillationtherearetwo phasetransition stages:
evaporationand condensation.For very small amplitude oscillationsthe amountsof evaporated
and condensedliquid areapproximatelythe same,and the vaporbubbleoscillatesabout anequi-
librium value. However,at larger amplitudes the nonlinearity of the bubble dynamicscausesa
differencebetweenthe amountsofevaporatedand condensedliquid. This differenceis small during
one period of oscillation, but leads to slow-timescale dynamics of the average bubble size. This

is called "rectified heat transfer". The same effect for gas bubbles growing due to mass diffusion

is known in literature as "rectified diffusion". For vapor/gas bubbles it can be called "rectified

heat and mass transfer". In some regimes the average bubble size can reach an equilibrium value,

and the bubble can experience stable oscillations. In this state the amounts of evaporated and

condensed liquid over the period are equal even when taking into account all nonlinear effects. The

equilibrium mean radius can be defined as the mean radius separating ranges of bubble growth

and shrinkage. The mean equilibrium radius can be stable (in this case bubbles of sizes slightly

larger than the equilibrium radius shrink and bubbles slightly smaller than the equilibrium radius

grow) or unstable (opposite situation). In a standing acoustic wave the bubble also experience a

slow drift under the action of the primary Bjerknes force, which is also a nonlinear effect. The

present study shows that the effects of bubble drift and rectified heat transfer are strongly coupled.

Accounting for these nonlinear effects in a measurement technique has additional advantages.

First, these effects depend strongly on the value of the accommodation coefficient. Second, the

characteristic times of the growth of the bubble average radius and of the bubble drift in weak

acoustic fields are much larger than the bubble period of oscillation. Also the corresponding

spatial scales (of the order of the bubble radius and the acoustic wavelength) are much larger than

the amplitude of the bubble radius oscillations. This makes these measurement much easier to

accomplish.

Successful completion of this effort will enable the refined theory and codes to be used for

development of a simple system for measuring the accommodation coefficient. Such a system

could be used not only in fundamental studies of kinetics of phase transitions, but also could have

good practical applications, for example for detection of extremely small amounts of contaminants

present in pure substances, because of the high sensitivity of the accommodation coefficient to

the contaminants. To establish such procedures the dependence of the accommodation coefficient

on various contaminants and ambient conditions should be determined first, which also requires a

good measurement technique for this coefficient. There could be substantial benefits from using the

accommodation coefficient measurement technique for controlling production of pure substances

such as semi-conductors, high purity chemicals and isotopes. This technique can be modified for

the case of arbitrary aggregate states of matter, and allows consideration of gas-solid, liquid-liquid

and liquid-solid non-equilibrium phase transitions (e.g. the crystal growth from melts in acoustic

fields under the effect of rectified heat transfer as was considered in [17]).



it Historical review of measurements of the accommoda-

tion coefficient

The kinetic model of evaporation and condensation was first proposed by Hertz i18] and Knudsen

[19]. If the difference between the saturation temperature Ts and the temperature of the interface

Ta is not too large, the rate of evaporation _ can be written in the form of the Hertz-Knudsen-

Langmuir equation. The accommodation coefficient/_ is also known as the evaporation or the

condensation coefficient. Some authors discriminate between the condensation and accommoda-

tion coefficient, while other authors use the same value for both terms, fl is a dimensionless

thermophysical parameter ranging from 0 to 1 which is a property of the liquid-gas interface (such

as the surface tension coefficient).

The history of accommodation coefficient measurements shows many problems, as can be

seen in the publications cited in this section and the fundamental monograph i:_f Volmer [1]. All

these works and the experimental data show a wide range of possible values of/3 and show the

importance of considering the physicochemical hydrodynamics near surfaces where nonequilibrium

condensation occurs. The following examples illustrate this point.

The first experiments of Hertz with mercury [18] gave the value/3 = 0.11. Knudsen [191 also

experimented with mercury, and his first experiments gave the value/3 = 0.0005. He explained

this low value of the accommodation coefficient by surface contamination. After improving the

conditions of the same experiment he obtained/_ = 0.11. Finally, experimenting with falling

mercury drops with continuously renewing surfaces he found fl = 1.

Numerous experiments of Langrauir and coworkers performed between 1913 and 1934, showed

that the accommodation coefficient for high temperature boiling metals such as wolfram, molyb-

denum, platinum, nickel, iron, copper, and silver is close to 1. Further analysis of these and other

data showed that the value of/3 for all of the mentioned metals is between 0.25 and 0.33, except

for platinum, for which fl = 1 could be true.

The accommodation coefficient for water was measured in the studies of Alty and coworkers
[20]. To determine the interface temperature they used a technique based on the measurement

of the surface tension and found/_ = 0.036. In [9] the water accommodation coefficient was

estimated from measurements of _lmwise condensation of steam at low pressure on a vertical fiat

plate and fl was found between 0.45 and 1. On the other hand, recent measurements of the water

accommodation coefficient using a cooled wall expansion chamber [11] showed values of/? that

decreased from 1 for 1 #m droplets to 0.006 for 15 #m droplets. This, perhaps, could be due

to some diffusion of trace contaminants or inert components to the surface. Nevertheless, the

experimenters that took precautions to ensure system and sample purity were not able to identify

trace contaminants. The authors of [21] also found a difference in the water accommodation

coefficient between a fresh surface (measured _ is 0.2) and a "stagnant" surface (measured/3 is

0.038).

In Fig. II-1 we present some reported data on accommodation coefficient measurements. We

plotted the ratio of the maximum reported to the minimum reported value of the accommodation

coefficient for five different substances. It is seen that these ratios can be of order 102 or even 103 .
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Figure II-l: The ratio of the maximum to the minimum measured values of the accommodation

coefficient for five different substances.

e Review of publications related to vapor bubble dynam-

ics

The acoustics of vapor bubbles and acoustic vapor cavitation were intensively studied theoretically

and experimentally in the 1960's and 1970's. Many of these studies were related to the design of

cryogenic bubble chambers for registration of the tracks of charged particles [22] and measurements

of the tensile strength of liquids [26]. More recent applications include acoustic enhancement of

boiling in microgravity [27, 28] and the use of bubble dynamics for determination of liquid-vapor

interface properties [4].

Wang {29], Khabeev [30], and Fanelli et al [31] performed linear analyses of forced vapor and

vapor-gas bubble oscillations and showed a strong difference in acoustic properties of vapor bubbles

and bubbles of non-condensable gas. In addition to the primary resonance, vapor bubbles exhibit

a second resonance in acoustic fields corresponding to smaller sizes for a given frequency, which is

known as the condensation-evaporation resonance. This resonance was first reported by Finch and

Neppiras [32]. Hsieh [33], Marston [34], and Ha<) and Prosperetti [35] provided physical insight

into the second resonance.

The effect of rectified heat transfer on vapor bubbles was investigated theoretically by several

researchers [3, 5, 35, 36, 37, 39]. Marston and Greene [40] observed stable oscillations of bubbles

for several seconds in liquid helium-I. Our recent study sponsored by NASA shows that there can

exist multiple threshold and stable equilibrium mean radii of vapor bubbles in isotropic acoustic



waves[5]. Hao and Prosperetti [35]and our study [5]havedeterminedthat the developmentof a
"slow" thermal boundary layer in the liquid at large time is a significantmechanismof rectified
heat transfer. This meansthat convectiveheat transfercanbeimportant for bubblesmovingin the
liquid. Theoriesand computationalschemesfor modelingsuchprocessesareavailable[41,42,43].

Therearevery fewpublicationsavailableonexperimentalstudiesof rectifiedheat transfer. For
example,Akulichev et aI [17] mention some experiments in cryogenic liquids without providing

quantitative information. A very recent publication of Ohsaka and Trinh [44] reports results on

water vapor bubble growth rate measurements, which perhaps is the first publication of such

data. This paper shows that experiments with vapor bubbles in acoustic fields are challenging.

Particularly, experiments for "vapor" bubbles were performed at atmospheric pressure and at a

temperature of 80°C. Such bubbles consisted approximately of 40% water and 60% air (by weight).

Our computations show that such bubbles differ from both pure air and pure vapor bubbles, and

a theory of rectified heat and mass transfer to vapor-gas bubbles should be applied in this case.

The above mentioned theoretical studies deal with spherical bubbles. However, due to the

parametric resonances between volume and shape modes, a stable spherical bubble shape can be

realized only at small amplitudes [45, 46, 47]. Other effects, such as acoustic streaming, translatory

bubble motion, and gravity, can also influence the results [48]. To describe shapes of levitating

bubbles and drops in standing acoustic waves variational and other methods were applied (e.g.

[49, 50]).

Forces acting on the bubble in acoustic fields were studied by several researchers. The major

force acting on a bubble in an oscillating pressure field is the primary Bjerknes force [51], which

is the time average over a period of the product of the bubble vOlume and the acoustic pressure

gradient. This force is proportional to the energy of the acoustic field. In normal gravity conditions,

depending on bubble size, frequency, and amplitude of sound, it can exceed the gravity force [52]

and the bubble can levitate [53] or be positioned in the center of a spherical flask such as in

sonoluminescence experiments [54]. Other important forces include the added mass force and

viscous drag force.

Note that the value and sign of the primary Bjerknes force depend on the response of the

bubble volume to the acoustic excitation. Since there exist a substantial difference in resonance

properties of gas, vapor, and vapor/gas bubbles, the primary Bjerknes force is different for these

three cases. At higher frequencies it depends on the kinetics of phase transition due to its influence

on the bubble resonance [6]. Thus the model predicting acoustic forces on the bubble and the

resulting bubble motion and shape deformations should include an accurate consideration of t_ubble

forced oscillation including heat and mass transfer inside and outside the bubble, kinetics of phase

transitions, liquid inertia, compressibility, viscosity, and surface tension.





Chapter III.

Statement of the Problem

We will consider the dynamics in acoustic fields of a bubble filled with the vapor of the host

liquid or a mixture of the vapor and an inert gas. We consider that the boiling point of the

inert gas corresponds to substantially lower temperature than the liquid temperature at the same

pressure. A mixture of water vapor and air is an example of a such system. We also consider two

configurations of the acoustic field: a) an isotropic field; b) a standing wave.

1. Model of Vapor-Gas Bubble in Isotropic Acoustic Field

Consider a spherically-symmetric model of a vapor-gas bubble in an isotropic pressure field, with

the wavelength much larger than the bubble size, wa <:< 6', where w is the circular frequency, a is

the bubble radius, and C is the speed of sound in the liquid. For a viscous liquid and inviscid gas

the mass, momentum, and energy conservation equations at the interface can be written in the

form [38, 58, 59J:

p, (_ - wl=) = Pga (h -- wga) = _, _ = _v + _i,
rr O"

H,. = -pg + _ (wgo- w,o)+ 2-,

1 2 1 2

(III-1)

(m-2)

2aa
(III-3)

(2

Here p, w, and q are the density, radial velocity, and heat flux, p and H r_ are the pressure and

radial component of the stress tensor, and _, cr, and l are the rate of phase transition from liquid

to gas, surface tension, and heat of phase transformation. Subscripts l and g refer to liquid and

gas, respectively, and subscript a denotes parameters on the interface. We assume that the gas

consists of two components, vapor and inert gas, which parameters are marked with subscripts v
and i.

The dynamic equation describing forced radial oscillation of a bubble of variable mass bubble

ll



in slightly compressibleliquid canbe foundin [60,5]:

4C] hw_,_ - -_Wlo

1 1 + + n,7 + p_o(t) + -_,_o
pt C - a

(IIi-4)

Here #t is the liquid viscosity and Poo (t) is the forcing pressure.

In the general model we accept that the gaseous phase is a perfect gas mixture described by

the following thermodynamic relations:

#, = RTg lnpi, I_ = RTg lnpv, #g = #, - #_,, (III-5)

p, = p,R_Tg, p_ = p,,R_Tg, pg = p,_ + p_, (III-6)

ci " P' c_ P_= --, =--, pg=p_+p_, c_+c_=l, (III-7)
Po Pg

I_ = R/M,, R,, = R/M_,, Rg = c,R_ + c_I_. (III-8)

Here/_ is the chemical potential, T the temperature, c the mass concentration, R the gas constant,

and M the molecular weight.

The resulting mass fluxes of the components from the liquid to gaseous phase, (, at the constant

interface temperature Ta can be described by [1]:

_, = 'c!"-'_)--_iO-')-- ,B['--;g) exp/_(Ta) fl._g-'0 p.,(T,,)
-' :ur--: nTo '

_,, = ((,---.,) _ (O--.0 _ Jfq--'g) #_ (T,_) _(g--.0 _ (:ira)
exp RT, ",,/2_'R.oT,_ exp - RT° '

where/3 are the proportion coefficients and the superscripts near j and/3 denote the direction of

the mass flux. At thermodynamic equilibrium, jg = jv = 0, pv = P_s (T_), and Pi = cu_H. Thus

B,-_'-'g) =/3_ -_0 = 8, and/_'-'g) = _v(g-_0 = _.. Using the above expressions for the fluxes and

chemical potentials we have

_, = _A [c,_H(To)- p_] ' _"= x/'_--_To_""(T_)- p._]. (Ili-9)

The last relation is the well-known Hertz-Knudsen-Langmuir equation describing non-equilibrium

evaporation of a one-component liquid [1]. The coefficient/_, is the vapor accommodation .(con-

densation) coefficient and can be treated as the fraction of vapor molecules hitting the interface

which condense. By analogy 8, can be called 'inert gas accommodation coefficient' and can be

measured from experiments on nonequilibrium dissolving.

From a linear analysis described in Chapter 4 and in Chapter 7 we found that Henry's law,

p,,, = c,,_H, (111-10)

is applicable for description of bubble dynamics over a broad range of frequencies, while for the

vapor component the nonequilibrium evaporation/condensation is important.

12



For spatially uniform pressure the diffusion flux of the inert component, jg, and the heat flux,

qg, can be expressed according to [56]:

jg = -&Dg m + Tg , qg = - 9--_- + k¢CpgTgJg, (III-11)

k¢ = C Tg kT j p,,T - T, \ oTg j + = c c---dp9 ,
(III-12)

where D and A are the mass diffusivity and thermal conductivity, kT is the thermal-diff-usion

ratio, and Cpg is the gas specific heat at constant pressure and concentration. Expression (III-12)

is obtained using the above model of the gaseous phase (III-5)-(III-8), where #g is considered as

a function of pg, Tg, and c/. Note that in limiting case of one-component gas, cico --+ 0, we have,

kT --+ 0, while k_ remains to be a finite quantity. The quantities kc or kT can be found from

corresponding tables or can be evaluated using the formulas following from the above definitions

and found in Ref.[61]:

o_M_ R 105 M_- M_kO (III-13)
k_ = M_c_ + M,,c_C_' a= 118M_+M,, T"

where a is the thermal-diffusion constant, and kYr has been evaluated for several intermolecular

force-models. For rigid elastic spheres k; = 1 and we took this value for our computations.

Details for computation of the thermal-diffusion ratio based on the first, second, and third order

gas-kinetic theories can be found in Ref.[62].

Now we can represent the mass and energy conservation equations in the form:

1 0 (r%)
r 20qr

(III-14)

In these equations we assume that the total gas pressure is spatially uniform, which is justifiable

when the velocity of the bubble wall is much smaller than the speed of sound in the gas. Note

that at the same time the partial pressures of the components depend on the radial coordinate

due to dependence of the inert gas concentration on this coordinate.

Assuming that the mass concentration of the dissolved inert gas in the liquid is small, cl << 1,

we can neglect the effect of thermal diffusion in the liquid. The effect of barodiffusion is also

negligible, since the liquid is almost incompressible. Therefore, we can represent the mass and

energy conservation equations in the liquid in the form:

a2w,_Oc, = 1 0 (r2j0, j, = -p,u,_Tr, (III-15)Pt + r2 onr r2 oqr

(__ 0'_,) 121.tzw_a 4a'-w,o 1 O (,.,q,) + . q,=-A,-g. (m-16)plC, + r = = r = &r r 6
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whereC_ is the liquid specific heat.

Assuming that the temperature jump at the interface is negligibly small (which is true for not

too high rates of evaporation or condensation), the following boundary conditions can be imposed:

wg],=a = wg:, Tg[_=a = T_I_=,_ = Ta, Tt[_=_ = T_, (III-17)

c/[_=,, = c.i,,, cll,.=G = c,,_, c]_=_ = Coo. (III-18)

The diffusion mass fluxes at the interface can be represented as

jgo = c o{- {i, j,== c,={- {i.

To specify pv, (T) the Clausius-Clapeyron equation can be used:

dr - T p_(T) (III-19)

where Pv, is the vapor density on the saturation line. In the present study for simplicity we neglect

the dependence of a, H, _, Al, D 9, and D, on the temperature.

Note that if the heat and mass fluxes are known, then these equations together with the

Rayleigh-Plesset equation (III-4) form a closed system. These can be found by solving corre-

sponding problems of heat and mass convective diffusion with boundary conditions c/_ and cl_ for

concentrations and T_ for temperatures inside and outside the bubble.

We also need to specify the function p_ (t), which for an acoustic field of amplitude PA and

circular frequency w can be written in the form

p_ (t) = p_o0 + Re{PAe/_t}. (III-20)

2. Model of Vapor Bubble in Isotropic Acoustic Field

The case of pure vapor bubbles is a limiting case of the vapor-gas bubbles at small concentrations

of the inert gas. However, it is important to consider this case in parallel with the case of vapor-gas

bubbles, due to substantial model simplifications that can be obtained for one-component bubbles.

This limiting case can be used for verification of the general results for two-component systems.

Simplifications for pure vapor bubbles compared to vapor-gas bubbles include:

• Simplification of kinetics of phase transitions;

• Simplification of bubble thermodynamics. Availability of a simplified energy integral for

vapor;

• Absence of mass diffusion;

• Simplification of boundary conditions.

14



Equations describing the vapor bubble dynamics can be represented in the form:

p_(a - Wla) =

I1_" =O

1 2

1-1_l_wl.- ql_ + _(wl_ =

p_° (a- wo=)= _,
G

-p_ + _ (w.. - wl=)+ 2-,
a

1 2

(III-21)

2ah
(III-22)

a

(III-23)

p_ = p_R,,Tg, (III-24)

_" [p,_(T_)- p,,.] (III-25)
_=_

Op_ 1 0
-_ + -#-g (_%wJ = o,

OTv 1 0 (r_q,,) qv = , (III-26)e_c_, + w_--G - ¢,_(t) = _ _ , - g:

( _"_) 121.4w_.a'tp,c,OT, Ew,o I 0 (pq,)+-g-_+ -# = C,g. 7g '
(III-27)

w.[_:_ = w,., T_[___ = T_[_:. = T., T_[_=_ = Too. (III-28)

Since for one-component bubble content the pressure of the vapor is spatially uniform (for a

two component system the inert gas and the vapor pressure are not uniform due to gradients of

concentration) the equations for vapor inside the bubble have the following integrals [59, 57, 63]:

w_ = (% - Z)£, 0T_ r/}. (III-29)
%p_ Or 3%p_'

@,, + 3%p,,w,,. + 3(7,, - 1)q,,,, = O, (III-30)

where % is the ratio of the vapor specific heats. These integrals simplify solution of the problem

since they explicitly express the vapor velocity through the temperature gradient and vapor pres-

sure, and connect variation of the pressure in the vapor with integral parameters characterizing

the bubble (bubble radius, radial bubble wall velocity, and the heat flux through the surface).

15



3. Model of Small Bubble in Standing Acoustic Wave

Consider the pressure and velocity fields, p= (x, t) and Uoo (x, t), of a plane standing acoustic wave

in a liquid:

Poo (x, t) = Pooo + PA cos wt sin kx,

PA
Uoo(x,t) - p, cSinwtcoskx, k= -_,

where k is the wavenumber. We limit our analysis to bubble radii small compared to the wave-

length, ka << 1. The acoustic field in the liquid described by Eq. (III-31) is obtained using linearized

equations for the liquid motion. This approximation assumes that

(III-31)

or PA << PIC 2, which holds for a wide variety of situations.

The bubble position, Xb(t), can be found by solving the following equations for bubble motion:

dub
rnb dt

dXb

dt

4 3

(vpool:=: -m) +
d(a3Vb)"

dt-__rpl dt

+4_K. #,_ (U_ - Ub),

fib, dm---2= 4_ra2_.
dt

+

Here Ub and rn_ are the bubble velocity and mass, _ is the rate of evaporation, g is the gravity

acceleration, and K t, is the viscous drag coefficient, which depends on the Reynolds number of

the relative bubble motion. According to the Levich formula at high Reynolds numbers Kt, = 3.

For small Reynolds numbers it can be set to K_, = 1 or K, = t.5 for a liquid_with and without

surfactants. Equations (III-32) are projections of three dimensional equations of motion on the

direction of bubble motion. To apply one-dimensional equations we assume that the vector of

gravity acceleration is co-linear with the direction of the acoustic wave vector and the direction of

the bubble motion.

We also modify the dynamic equation of bubble motion as

cJ I+ ,,,L=

a,)[ ,, ],p, "C +-C_tt II'a +P°°(xb(t)'t)+4#*w'Ja-lp'(Ub-U°°)2

(111-32)

to include variation of the liquid pressure at the bubble location and the bubble relative motion.
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m Vapor-Gas Bubble Equilibrium in the Absence of an

Acoustic Field

Vapor, gas, and vapor-gas bubbles can grow or shrink in liquids without any acoustic field. This

happens due to phase transformations such as condensation or dissolution of a thermodynamically

nonequilibrium bubble. A bubble in the bulk of the host liquid also cannot be in equilibrium under

action of the gravity force. The buoyancy force will cause bubble motion in the absence of an

acoustic field. If the thermodynamical and gravity driving forces are sufficiently high then the

external acoustic field may not affect the bubble dynamics and this case can be studied separately

without complication of the problem by acoustic action. In the present study we consider the case

when the effects of an acoustic field are comparable to or larger than the effects driving the bubble

dynamics in the absence of the acoustic field. We limit our study to small amplitude acoustic

fields,

PA _ _ << 1. (III-33)
P_0

Therefore in this case the effects of bubble thermodynamic and gravitational instability in the

liquid are small, and we assume first that the bubble is in a state close to thermodynamic equi-

librium.

For vapor bubbles this means that the mean liquid pressure is close to the saturation pressure

at the liquid temperature far from the bubble:

P_o = p,(T_) + Ap, A = A_._pp<< 1, (111-34)
Poo0

where Ap is the Liquid supercompression. For superheated liquids we have Ap < 0 and for

subcooled Liquids we have Ap > 0. We allow Ap to be non-zero, but it should be reasonably small

(we provide mathematical definition in the sections dedicated to the method of solution). Even if

Ap -- 0, the vapor bubble is unstable due to capillary effects. Indeed the pressure inside a bubble

of radius ae in thermodynamic equilibrium is

20-
p_ = ps(To_) + &p + --. (111-35)

ae

The temperature of an equilbrium bubble should be the same as the temperature of the liquid,

T,_o, and at the same time it should be the saturation temperature at the given vapor pressure

(111-35).This means that the equilibrium bubble radius is

20-
ae = _m (III-36)

ap'

and equilibrium bubbles can exist only in superheated liquids. Note that this is an unstable

equilibrium. In this and other cases a vapor bubble will grow or shrink in the absence of the

acoustic field. We require that

17



2(7
$ _ 1 Ap + -- << 1, (III-37)

ps(Too) a

to have comparable effects of the acoustic pressure variations.

The pressure inside an equilibrium vapor-gas bubble is

2a
pg = P,_ + P, = Pooo + --, P¢¢o = pa(T_) + Ap, (III-38)

ae

where the difference between the mean liquid pressure and the saturation pressure may be not

small. In an equilibrium state the vapor-gas bubble has the same temperature as the liquid,

Tg -- Too. If effects of inert gas dissolution are neglected, then the inert gas concentration in the

bubble can be arbitrary, c_0. In the equilibrium state we have p. = ps(T_). Using equations of state

(III-5)-(III-8) we can determine the equilibrium pressures of the inert gas and fhe gas mixture:

_ ,T , +  o- p (Toone ),
pie- c_0----_pst ¢_), Poe = _ot_

Then we can determine from (III-38) the equilibrium radius:

c_0 = 1 - ci0. (III-39)

2_ 2(7c_0/_, (III-40)
ae_

Pie - Ap c_R_p,(T_) - c_oP_Ap"

If we take into account solubility of the inert gas then its concentration inside an equilibrium

bubble is not arbitrary, but is determined by the equilibrium relation between the inert gas pressure

and the dissolved gas concentration in the liquid, coo (in our model, by Henry's law):

P_P_ Poe = ps(T_) + pie, ae = 2(7
Pie = c_H, c_e = P_p,(T_) + t_p_' Pie - Ap"

(III-41)

In any case a bubble of radius a _ ae will grow or collapse in the absence of an acoustic field. The

driving thermodynamic force is proportional to the difference between the actual and equilibrium

gas pressures, and conditions (III-34) and (III-37) for vapor-gas bubbles become:

A----IP°e--P¢_°]<<I, 6= -1 I - D2aIP¢_0 Poo0 Poe Poo0 + a << 1, (III-42)

where relations (III-39) or (III-41) can be used to determine Poe.

A parameter responsible for bubble instability due to the buoyancy force can be found by the

following reasoning. In a standing wave the hydrostatic pressure drop, Ap_, along the wavelength

should be much smaller than the ambient pressure. Otherwise a small amplitude acoustic pressure

cannot balance the hydrostatic pressure drop, and bubble motion will be not influenced by the

acoustic field. This condition can be written in the form:

APh ptCg <c< I, (Aph ptgL plCg) (III-43)
gr Pcx_O wp_o a,
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5. Length Scales and Dimensionless Equations

The following characteristic length scales can be introduced for the problem considered:

w \Pl/

i

, L_= --, Lc = --, (III-44)
pg, w

1/2 1/_ pl 1 (AzToo ] ½
LTg= , LTI= , L_ (1 p)wV'2_rR,,Too Ld =--- w\ #l /

where '_z = A,/(p_Q) and _g. = Ag./(pg.Cpg. ) are thermal dii_usivities of the liquid and the

gas, and stars denote characteristic values of parameters used for scaling. LTg and LTt are the

characteristic lengths of temperature penetration into the gas and liquid, Lp is the characteristic

primary resonance length, L_, is the characteristic thickness of the viscous boundary layer in the

liquid, L_ is the characteristic capillary length, Lc is the inverse wavenumber, and L_ and Ld

are the characteristic lengths connected with the non-equilibrium phase transitions and viscous

dissipation in the liquid.

The following dimensionless parameters also can be introduced:

Let _l Leg '%" Pg* Ag.= _ =--, p=--, I=_,
D_ ' Dg. p_ Az

Rg. poo. H R_P_ Rg.Tg.
= -- -- kH = -- ka = -- ks -

k., c,_.' _=pg.' p,,.' R_.' z_ '
l,, & _.1%

k,, = Rg.Tg-------_+ l - p, k_=R_.T-------_+l-p, k,¢- p_.,

, %.dp,,,,I , <,= d'p,,sI
r, = Pg* dT .T=T,. _. _ I_=T,.'

m - m c,.,- c_
a_ = I%. ' a_ = C_.

Note that the length scales written above in combination with the dimensionless parameters pro-

duce new length scales having physical meaning. For example, characteristic lengths

(,___) 1/2 (.___) 1/2 LT .
L_g= LT9 L_l = = (III-45)

represent the characteristic thicknesses of the mass diffusion boundary layers in the gas and in the

liquid. The ratio of the bubble radius to any characteristic length scale listed in (III-44) produces

8 independent dimensionless parameters. Taking into account that all but two of a (III-13), e,

(III-33), 6, (III-42), and g_,(III-43) and parameters (III-45) are also independent we can see that

the dynamics of a vapor-gas bubble is controlled by 26 basic dimensionless parameters (!). For a

pure vapor bubble this number reduces to 15.
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Chapter IV.

Multiscale Technique For Bubbles in

Isotropic Fields

To obtain the equation for rectified heat transfer we use a multiscale asymptotic technique for

weakly non-linear oscillations of drops and bubbles [14, 2]. However, the method must be modified,

since the effect of surface tension neglected in [14, 2] changes the rank of the system matrix for

zero-mode of oscillation, and a straight-forward application of the technique is impossible. To

demonstrate the method of solution we will start with a simplified system for pure vapor bubbles.

Then we show how to include effects of bubble drift in standing waves and two-component effects.

1. Transformation of Variables

First, we reduce the number of variables by eliminating p_, w_, Pva, w_, and Hl_ from the system.

The governing equations can be represented in the following form:

pth - ptw_ - _ = O, (rv-_)

a + plC (via + _wl_ + + wtaPl 2C 2Cpl pla /

20-

p_a

ap, + 37p_/_ + 3(7 - 1)q.a - 37_R_Ta = 0, (iv-2)

(tv-3)

gv-4)
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We then transform
transfer problems:

(r,t) _ (zl,t) with 77 -- r/a(t)

pvTooa _ OT_ ('7- 1)p_,T,,

,7 t '7 -

to fix the moving boundary in the heat

(iv-5)

.X,, , TJ,,=1= T<,.
qva -- a 7= 1

a_OTz
1 oi /'201Tz_ [a_( 1 / a_ ] o_P_ 12#,__w2_

(IV-6)

_,aT' I_1,,=,= T,,, _1.=oo= T_o, q,,,=
a o_ 7= I

where nz and n_, are the thermal diffusivities of the liquid and vapor (at ambient conditions).

Next, we introduce dimensionless fast and slow time scales, to = wt, and t,, = e"u_t, n = 1,2, ...

All unknowns are considered now as functions of this set of times and the temporal derivatives

are represented as series:

d_ = w + e_-]l + _ + ..... (IV-7)

Finally, we expand the unknowns in the following asymptotic series:

a(t) = ao(t,,t,,...)p +_a, (to,t,,...) +...],
wu,(t) = wao(t,,t2,...)[ewl (to,t,,...) +...], (IV-8)
p,,(t) = p=(T_o)[l+ep_(t0,tl,...)+...], (IV-9)
T_(t) = Too[1+ eT, (t0,t,, ...) + ...], (IV-10)
_(t) = wp,ooao(ti,t2,...)[e._i(to,t,,...) + ...], (IV-11)

q_(t) = A,Too[a(to,h,...)]-' [eq,(to,t,,...) +...], (IV-12)
q,_(t) = )_Too[a(to,h,...)]-' [er_(t0,t_,...) +...], (IV-13)

T_(7/,t) = T_o[l+eu_(Tl,t0,h,...)+...], (IV-14)
%(7/,t) = Too[l+ev,(7/,t0,t_,...)+...], (IV-15)

T_ = Too and Pv = ps(Too).where pvoo is the vapor density at
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2. Solution of Thermal Problems

Formally, as e --* 0, the convective and source terms in the energy equations are small and, in the

rn-th order approximation, we have the following inhomogeneous linear equations to determine

the temperatures outside and inside the bubble, respectively:

L_,Oto _200i,_ -N-) = f'_' (w-16)
k_agOp._ 1 0 f 20v., '_
L_,,, Oto rl20_? LT? -_) = g,-, (IV-17)

These are subject to the boundary conditions:

,_I.=I=T,,,, _1.=_=0, v.,l.:_=T.,, v_l,=o<_; (rv-18)

where fm (r], to, t_, ...) and gm (rl, to, t_, ...) are functions that depend on approximations of order

less than m.

Let us evaluate the range of frequencies, where this scheme is valid. Since for vapor bubbles

the heat transfer in the liquid plays the major role, consider as an example the energy equation

for the liquid (IV-6), for which the terms can be evaluated as follows:

a 20Tl a2oZXT 1 0 i' 20Tz'_ a2oZxT

_, _ ~ _,t. ' ¢ o_L_-N)~ _, '

77\'7- _) N "" ,_,d,t. ' p,,_,,;__ ""
12/ztw_= 10(Aa)U/zt

o,d

&r/_ t,2Al

pa_AaAT

_lt.& '

(I'V-19),

Here Aa and/kT are the characteristic variations of the bubble size and liquid temperature, dl

is the thermal boundary layer thickness, and t, is the characteristic time. Consider fast bubble

oscillations. In this case we have/ka ,,, eao, AT ,.., eToo, dt ,'-' LTI and t, ,.o w -1. At e --, 0.1 the

latter term in (IV-19) is small compared with the first term for w << wa = ptctTo,,/#t. Normally this

limitation is not restrictive (e.g. for water and helium at atmospheric pressures we have wn/2r ,-.,

10nHz). The convective term is related to the liquid motion generated by the moving bubble

surface (the third term) and condenstation or evaporation (the fourth term). The third term (IV-

19) is small at small e even at high frequencies, since in this case high temperature gradients of

order eToo/LT_ are realized in a thin boundary layer r] - 1 ,-_ LTl/a0 and (rI - r/-2) 0Tl/0r/,-_ eToo.

The fourth term (IV-19) is small compared to the first term (IV-19) if epa0 << LTd. For _ ,-_ 0.1,

p ,,- 10 -z, and bubbles of typical radius a0 < 1 ram, the thickness of the thermal boundary layer_

in the liquid should be much larger than 0.1/zm. For water at atmospheric pressures this limits

the theory to frequencies w/2r << 1 MHz. Note that the acoustic wavelength is of order 1 mm at

frequencies w/27r ,,_ 1 MHz, and the theory is limited by such frequencies for I mm bubbles.
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We assumethat all functions in (IV-16) - (IV-18) areperiodicwith respectto to. For example

{m 1Ur,(rl, to, tl,...) = Re ___u,,n(rAtl,t2,...)e i'_t° , (IV-20)
n--------0

p,_(to, tl,...) = Re p,_n(tl,t2,...)e i'_t° , (IV-21)

t,n----O

where u_n and Pmn are the complex amplitudes (the number of modes increases with the number

of approximations because of non-linear generation of subharmonics).

We should also notice that the first two orders of approximation of the present theory do not

depend on initial conditions. This assumes that the bubble resides in the liquid for a long time

and a quasi-steady slowly changing average temperature prone is developed near the bubble. In

the m-th order approximation equation (IV-16) written for zero-mode

1 0 { 20v 0 
.'00 t, -N-) (w-22)

shows that the non-stationary, X&k,°u_° and convective, Peo (rl - t}-2) _m, terms are considered to

be small compared to the conductive term _ (rl_-_) and are passed to the approximations

of order higher than rn. Here Pe0 = E_22a0_ is the Peclet number of the slow bubble motion, and
£{._ 0tk

e k a 2

X = _ (we show later that nothing in the present theory depends on tl, so k 7> 2). This is correct

from the point of view of the current formal asymptotic procedure, however, is questionable from

the physical view point, because actual values of X and Pe0 may be not small. Bringing these

terms into the rn-th order approximation creates a mathematical problem, which solution currently

is not available. Note that Fyrillas & Szeri [64] obtained a solution for transient slowly evolving

fields considering the non-stationary term to be of the same order as the conductive term, but for

constant ao (Peo = 0). If significant growth or shrinkage of the bubble occur in some time scale

tk (so Oao/Otk ", ao), then in that scale Pe0 -_ X, and the convective term is of the same order of

magnitude as the non-stationary term.

The assumption on periodicity of functions in the fast time scale is not valid for initial value

problems at times of order of one period of oscillation. Fyrillas & Szeri [64] evaluated that time as

a few periods of oscillation. The depth of penetration of temperature perturbations into the vapor

and liquid due to oscillations of the bubble surface temperature is much smaller than the thickness

of the thermal boundary layer evolving in slow time scales. That is why the stage of establishment

of a periodical solution is not important when we consider slowly changing temperature fields.

Since slowly changing fields depend only on slow variables the initial conditions for their evolution

should also be formulated in slow time scales. In the present theory the initial conditions appear in

the third-order approximation, which also requires a spatial matching procedure and is described

in a separate section.

For each mode, Equations (IV-16) and (IV-17) are replaced by equations of the same form, but

with the factor in in place of the operator 0/0t0. Solution of these linear problems are available
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[14,2] and can be represented in the following form:

Vrnn = kT Pmn -[- -

F"07) - 2V_ ao --_z V_ xfm,,(xldx,
1

71

0

= T.,.- F.,.(_),

Here we consider that Re{V_} > O.

The complex amplitudes of the heat fluxes can be determined as:

(IV-23)

(IV-24)

q,.,,,_= H,_T,.,,,_-C_,_,

H,, = l + -_ v_,

C.,. = 2_/v_F.,.O),

_._. = A (k_pm. - Tin.) + Din., (rv-26)

(rv-27)
1

0

3. Complex Amplitudes

Substituting asymptotic series (IV-S)- (IV-15) and (IV-7)into (IV-l)-(IV-4) and collecting terms

for the same powers of e, we obtain the following linear inhomogeneous equations to determine

the unknowns in the rnth order approximation:

Oa,.,,
_---_ - w,.,., - p_,., = ]"(1), (IV-29)

___2L" a02 [( 4 L'). 0 4L_] ( --_ooa°O) y(,),7,
am+-- I+ + w,_- I+ Pro=

_o L_ _ _o 4 J Lc (IV-30)

0a_ 0pm
3-y_--:+ _--_-

L 2

37_ + 37 '-_T_ rm -----y_3),
a5

(IV-31)
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k,L_,, 1 + k8 - : 2L_ _,_,- qm + Arm = y(4), (IV-32)

_.,+ L_ [k8(_-p)p,,,-T.,]= Y2),
ao

(IV-33)

where the fight-hand sides, Y_'),j = 1, ...,5, depend on the low-order approximations.

To obtain equations for the complex amplitude of the nth mode of oscillations we can replace

0/_0 in these equations with in. Consequently, equations (IV-29) - (IV-33) and (tV-26) for the

complex amplitudes can be represented in the following matrix form:

M.X._,_= Y,,._, (IV-34)

Mn

in -1 0 -p 0 0 0

-2Lo/ao M22 Ms 0 0 0 0

37in 0 in -37 0 0 37L_-_/a2o

0 0 0 M,_ 0 -1 A

0 0 Msa 1 -Lz/ao 0 0

0 0 0 0 H. -1 0

_,o o -k_I. o I. o

tOmn

P=.

T=.
am.

rmn

(r22

r22

where

4 :1M2u n_ a02 J'

(M_ = L_._ +l-p 1 a0 '

inao

M2a = -1 - L--'-_-'

M_ = (1 - p) k_L_, (IV-35)
ao

Let us now specify the structure of the fight hand side terms Ymn. We can represent them as:

Y,.,. = S.,. + N_ + Fro., (IV-36)

where S.,,_ is generated by slow time scale evolution of linear terms, N,.. is generated by non-

linear terms, and Fm,_ is the external forcing. S.,. can be found from linear equations (IV-29) -
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(IV-33), (IV-16),(IV-17),(IV-24),(IV-25),(IV-27),and (IV-28)and asymptoticseries(IV-7) and
(IV-S)- (IV-15):

g i=1Or,,,_,

37

I m-1

Oao O(aoaj.)

j=l

= S_ = O,

m-1

_0__Lc Ot.___ '

rn-10Pjn

"= Ot___

where the superscript in the brackets near S,n,_ shows the number of the vector Stun component

and 5/j is the Kronecker delta.

In our case, F,_ is non-zero only for n = 0, 1. The order rn for which Fro0 _ 0 depends

on the relation between the small parameters e and 5 determined by (III-33) and (III-37). For

5 ,-_ ern" we have Fro0 -_ {} only at rn = rn,. Since e and 5 are independent parameters, m. can be

selected arbitrarily. However, a better way is to set m. using the characteristic asymptotic form.

This can be done by the following physical reasoning, e and 5 are parameters responsible for two

instabilities regarding a vapor bubble. The former is responsible for the instability due to rectified

heat transfer and the latter for the instability due to the surface tension and deviation from the

saturation state. The characteristic times required for development of these two instabilities are

proportional, respectively, to the energy of the acoustic field, or e2, and to the deviation from the

equilibrium state, or 5. These two instabilities can be brought to the same order of approximation
if

5 ~ d. (IV-37)

This is a condition for the characteristic asymptotic form. Accepting (IV-37) we have the foUowing

expressions for the non-zero components of F,n_:

a0 ]

An expression for Nm,_ can also be derived using governing equations and asymptotic repre-

sentations. We do not reproduce them in general form here since they are too unwieldly.
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4. Evolution in Slow Time Scales

To obtain equations describing evolution of the unknowns in slow time scales, let us consider the

M0

operator M0,

( 0 -1 0 -p 0 0 0

-2L,, /ao 4L_/L_ -1 0 0 0 0
0 0 0 -3"7 0 0 3"TL_.v/a_

0 0 0 M_ 0 -1 A

0 0 Ma3 1 -L_/ao 0 0

0 0 0 0 1 -1 0

0 0 0 0 0 0 1

(IV-39)

The determinant of this matrix is non-zero:

det M0 =
6'7 (1 - p) ksL_ L,, (rv-ao)

From (IV-37) we have L_/a0 --" i5 ,,, e2 << 1, or detMo = O(e2). According Cramer's rule the

zero-mode components of solution, v(i)"_mO, are

x(i) det M_
,_0 = det Mo ' i = 1,..., 7, (IV-41)

where 1V_ is the matrix M0 with the ith column replaced by the fight hand side vector, Yrn0-

By definition of an asymptotic expansion -_,n0Y(0should be of order of unity. Thus

det _ = O(e2), i = 1, ..., 7.

The form of matrix M0 (IV-39) shows that this condition automatically holds for i = 2, ..., 7.

However for i = 1 it becomes non-trivial. Calculating. det M(0I), we have:

det (4L_ y.O)
= -3'7M53 \_ ,.o

- (1 4pL_ M,_--Li ao ao2 Y(_)) - 3"7Y(_)"

where Y(r_6) and Y(_) can be found as limits of (IV-24), (IV-25), and (IV-27) at n ---* 0"

co

y,.(6) fo =- Cmo = rlfrno(rl)drl,

1

Y£)=D,,,o=f ,72g o(,7)d,7.
0

(IV-42)

To avoid secular terms in expansion (IV-8), am0 and det M(_ should be limited at tj "'* o0, j =

1, 2, ... This is the only requirement for the uniform asymptotic expansion which is not unique. The
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non-uniqueness of the asymptotic expansion can be easily demonstrated for the case of La = 0

(the effect of surface tension is neglected). In this case det M0 = 0, det M(_ l) = 0, and am0 is

determined as an arbitrary limited function of slow times. If we set a_0 = 0, for rn = 1, 2, ...,

then we uniquely select the expansion in which a0 is the bubble radius averaged over the period

of oscillation, (a) , since (a) = ao (1 + ealo + e2a2o +...). Such a definition of arbitrary a,_0 was

used in a previous investigation [2]. Similarly, for the case Lv -_ 0 we can specify

det M(o_ = 0. (IV-43)

According (IV-41) this leads to

a,_0=0, for re=l,2,..., (a)=a0, (IV--44)

which is a convenient definition of a0.

5. First Order Approximation

In the first-order approximation the non-linear term NI,_ in (IV-36) is zero, the components of

the external forcing are given by (IV-38), while the slow-scale evolution vector S_ has only two

non-zero components (IV-37):

1(1 1 0ao S_) = 37 (:9ao (IV-45)
0 = aoOtl ' a0/_tx"

Using (IV-38) we can explicitly resolve (IV-34) for the first-mode using Cramer's rule:

iao) A (_) (IV-46)

j = 1, ..., 7,where X_ ) are the components of the vector Xn and A_/) can.be represented as:

A(I)

A(2) =

A(4)

A(s)

A(6)

det M1

= L._._(iM44 + 3"_k._211)- (i + 3_'Mss) (//i + 211)
ao

+ a----_

iAO) - pA(4), A Ca)= 3i')' (H1 +AI_--_M,4),

= 3iq'[_-_AI1 - Mss(Hl+AI1)],

= 3i7 (k,_ AI_ - M_aM, u),

= H1A(a), A(7) = I1 (k.y A (3) - A (a)) ,

[( (a_ 1+ i+ - 1+= -- 4 _ _ A (2)
L; 4 J
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Note that theseequationsareconsistentwith previousresults [30,17,3, 59, 2].

From (IV-42) and (IV-43) we have using (IV-36), (IV-38), (IV-45), and (IV-35):

i)a--2°= O, ao = ao( t2, t3, ...). (IV-47)
0tl

To determine a slow-time evolution of the mean bubble radius we need to consider the second-order

approximation.

6. Equation for Rectified Heat Transfer in

Order Approximation

Since a0 does not depend on tl, the same is true for all other variables.

components of vector S in the second order approximation are

s(2= S?o)__3 o o
aO Or2' aO c9t2"

the Second

Thus, the non-zero

(Iv-48)

The non-zero forcing term is (IV-38), while the components of the non-linear term N2n can be

found in the second-order approximation from quadratic non-linearities. The non-zero components

include modes 0 and 2 which correspond to the average fluxes and nonlinear doubling of the

oscillation frequency. To obtain the equation of rectified heat transfer it is sufficient to consider

just zero-mode vector N20. After some algebra one can find the components of this vector in the

following form:

N(_) = 0,

r4L_ +ia_ • } a_ 12 L_^r(2) Re - _-_ anWn 4" IWll -- Jail 12

1V(_3)

jV(_4)

2 -- ipna_l +_nan + _nTn '

2L_,_ Re Tn_n - PPn_l + + l - p an_l ,

1 ,
N(_) _ Lt_ k, (l _ p) Wi lTnl, _ _ ne {(nTn } '

4o_

N(_ ) - D20-2La_ Re{(1-_) " * • }wna n -&la n +_[1Tn •

Here E(z) is the third--order exponential integral,

1
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and 7r_ is the dimensionless second derivative of the saturation pressure along the saturation curve.

Using the Clapeyron-Clausius equation (III-19) for a perfect gas, we have

7d_' T _ d2p_ I = 1 - k_ (1 - p)(2 - p)- p-7d-_ T--T_ k_(1--p)3

From (IV-36), IV-38), (IV-48), (IV-42), and (IV-49) we can obtain the following equation for
rectified heat transfer:

[ 4 -,) s, M.Oao _ W2(ao), V(ao)'- 1+ Ms3(a0)- (IV-49)
Ot2 [ L_ ao J

w2(oo) = _ov(_o)- M_ z_+m +,,,-,,so _o

1 4pL2u -\37 2o a8

This equation agrees in limiting cases with the equation for rectified heat transfer obtained using

simplified models [37, 3, 17, 2]. Note that Equation (4.2) in Reference [2] contains misprints.

7. Third Order Approximation

It is noteworthy that the asymptotic scheme used does not provide uniformly valid expansions in

orders higher than 2. The source of asymptotic singularity is connected with the infinite spatial

region for the thermal problem in the liquid. Below we consider this problem in detail.

a. Spatial Matching of Asymptotic Expansions

The above procedure for solution of the thermal problem is correct for determination of the nth

modes of fluxes when n _ 0. At n -----0 the temporal derivatives with respect to to in the left-hand

side parts of equations (IV-16) and (IV-17) are zero. In this case the temporal derivative is treated

in a straightforward way which causes a singularity of the asymptotic expansion (small parameter

near the highest derivative). In the slow time scales a temperature perturbation propagates from

the bubble to the bulk of liquid to characteristic distances 77 >:> 1, and the slow spatial scales

should be considered. For the boundary value problem matching of inner and outer asymptotic

expansions is an appropriate asymptotic procedure.

The inner problem for U_o follows from (IV-16):

rf Oft )7 = -f.,o, U._ol__-, = T..o, u_o[,=_o = On, (IV-50)

where zg.,o is the matching constant to be determined. Solution of this problem is

)7
r_ 1 1

(1V-51)
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and for zero mode of the heat flux we have

aM =

CO

r
_=1

1

(rv-52)

Comparing with (IV-26) we can determine

c,,,o= 0,,,o+ f of,,,o(,7)d,7.
1

(IV-53)

For simplicity we limit ourselves to the third order approximation requiring a one-term outer

expansion. In this case it is enough to introduce one slow variable r/2 = _r/(otherwise we introduce

for each time scale, tk, its own slow spatial variable, r/k = ek/Zr/, k = 2, 3, ... ) and consider

a zero-order approximation, u_°), to outer solution u (°) (otherwise we consider a series, u (°) =

u(o°) + cu_ "} + ...). The outer problem in slow scale (t2,r/2) is therefore

L -S ] = 0,

Solution of this problem with the following initial and boundary conditions:

(rv-54)

_,(o_1 = o, . (o>1 = o, (rv-55)o I_==o -,.,oI,_=oo

can be represented in the form

u_") = e3LTlao(t2)r/2/ ¢2°lt2=°erfc [ a°(t2'"'')r/2]2Dr_v_ J
+

o 0¢ \2Lrzv/_-_} J '

where ¢20 is an arbitrary function of time.

To match this solution with the inner solution, we substitute r/2 = er/and expand this expression
at e---_ 0 :

O_o d_

,N +
0

+ .... (IV-56)

At the same time the two-term outer expansion of two terms of the inner solution, u_O, (IV-51) is:

u_i) e2u2o+eaU3o+ cu {02o + 1 [T_o
= ... = - _ Z920

7/ + f x (x - 1) f2o(x)d
1

+ e3'030 + ...

(rv-57)

Here we used the fact that f30 = 0. This is true for harmonic oscillations, since the regular non-

linearity of the equations generates modes 0 and 2 in the second order and modes I and 3 in the

third order approximation.
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Comparing(IV-56) and (IV-57) onecan find:

ao (T2o+ E2o)
_ 2o ------_7 t

CO

E2o= f =(=- 1) f_o(=)d=,
1

r J l1 q5200 0q520 de

o_o = v_ [_ + o o¢ _ ' _,oo= _',ol,,:o. (re-ss)

b. Equation for Rectified Heat Transfer

In the third order approximation we have

10ao
Y_) -

ao oqta '

yg = : o,
ao _a'

Y_) - C3o= Oao, Y_) = o.

General conditions (IV-43) and (IV-42) provide us with the following equation:

aao = w3, w_ = L_ V(ao)030. (rv-59)
0ts

The zero mode of temperature in the second order approximation can be found using (I1/-39)-

(IV-41), (IV-36), (IV-48) and (IV-49):

We also can determine

S2o=_Re a_]T,, I+---_/]+-_TzE writ n + . (IV-61)

Equations (IV-58), (IV-60) and (IV-61) specify _m as a function of ao.

Generally, if we know equations in time scales t2, ta, ... then we can introduce one slow time,

r = e2wt, and represent the equation for rectified heat transfer in the form:

Oao = Oao (tu,ta, ...) +eO ao(t?,ts,...) + ='W= (ao (r, er,...)) + eWs (r, er, ...; ao (r, er,...)) + ...

_2 _3 (IV-62)

Thus, we have for ao the following equation:

Oao eL_ V(ao) [ _2ooo-7= w_(_o) _ --_ +

T

f dOu0(a0)0a0 (0 d¢d_0 0¢ 47-:7
+ O(d).

(IV-63)

The term Ws reflects an important physical effect which shows that the growth rate depends

not only on the current value of the bubble radius, but also on the history of the development of

the thermal boundary layer. Mathematically the type of equation also changes from an ordinary

differential equation in the second order approximation to a non-linear integro-differential equation

in the third order approximation.
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c. Thin Boundary Layers

The case LTt _ ca0 corresponds to a thin oscillating thermal boundary layer in the liquid and

requires some special asympotic treatment. In this case the thickness of the 'fast' boundary

sublayer is of order LTda0 << 1. The evolution of the 'slow' thermal boundary layer in the liquid

occurs at 7/- 1 >> LTl/ao, which, therefore, is not limited by the case _?>> 1, which we considered

earlier to treat the outer problem. Instead for the outer problem we need to consider in the third

order approximation a general case _?,-, 1.

Introducing the boundary layer variable, (! = ao (77- 1)/LTz, we can represent the inner

problem (IV-50) up to the third order approximation in the form

u2o]¢,=o = T_o,

u3ol_,=o= T_o= O,

02us° - 2LTt 0w20

w20lcs=oo . (o)I
= "(_0 I_,=l '

where U(o°) is the outer solution. Solving this problem and taking into account that f30 = 0 and

T30 = 0 we can determine the zero-mode heat flux in the third order approximation (IV-52)

ao Ou3o] = -030.q3o = LT_ O_f _--o
(IV-64)

Solution of these equations allows us to determine the following relations between the outer

problem and the boundary conditions and the heat flux:

(o I_=i , (IV-65)

where the function _ can be computed using (IV-61) since it is a limiting form of (IV-58) at

Lrda0 <<1.
Consider now the outer problem (the problem at 77 ,,, 1). For simplicity we pass the mass

flux term proportional to p << 1 and the heat source due to viscous dissipation (LTt/La) 2 << 1 to

higher order approximations (see estimations (IV-19)). The outer problem will be then:

subject to the following boundary conditions:

u_O)l

rt=oo

(IV-67)
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This problem canbe solvedwith the following initial conditions:

=
It2=O

( v-68)

where H(_?) is some initial temperature profile near the bubble. For a bubble generated in a liquid

of uniform temperature one can set H(r/) - 0.

Generally solution of problem (IV-66)-(IV-68) can be obtained only numerically. This is the

essence of a numericaI-analytical method, which treats the problem in the third order approxima-

tion and requires numerical solution of the boundary value problem (IV-66)-(IV-68). Numerical

solution allows us to determine Oa0 in (I1/'-65) and evolve the bubble meanradius in a slow time

scale according (IV-59) and (IV-62):

= (a0)+
Or

(rv-69)

Note that this method generalizes the consideration given above. If we drop the asymptotic

assumption LT_/ao ,'-, e << 1 (consider LTdao ,-, 1) then we obtain analytical solution (IV-63).

8. Vapor-Gas Bubbles

The basic asymptotic technique for vapor-gas bubbles is similar to that described above for pure

vapor bubbles. There are several differences, which we address in this section. The major difference

is in the heat and mass transfer in the gas where the energy and diffusion equations are strongly

coupled. The energy and diffusion equations in the liquid are also coupled, but only through

the boundary conditions. They also have similarity, which does not require special solution of the

diffusion problem, and equations for the energy equation can be used (a small term representing the

heat source due to viscous dissipation may be dropped). Therefore the complex amplitudes of the

boundary temperature and concentrations can be determined by solving a general system of linear

equations in the ruth order approximation, while the zero-modes of the heat and mass fluxes in the

liquid will be related to the boundary values by similar relations as for a pure vapor. Such system

can be solved in the second and the third order approximations to obtain an evolution equation of

type (IV-69). In the present study we, however, limit ourselves to the first-order approximation

to evaluate the influence of the inert gas component on the bubble forced oscillations.

a. Thermal and Diffusion Problems

In the first order approximation we seek solutions of the governing equations in the form:
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T= = T_(1+_Re{T'e_'}),
Ct _---

pg =

q,_ -

Trno = T_o, rn -- l, g, a,

c,o+_e{c',e"<},_=_0+_Re{c',e_'}, C,o=C_,

wpgoaoeae{_'e_t}, m=i,v,

A._T,,_o P,noD,.o
--eRe{q_e_t}, j,n,_ = eRe{j_ae_t}, rn=l,g.

ao ao

Liquid

The heat and mass transfer in the liquid is described by equations

iZ' - _2 _ \ -_ 2 = O, _I,7=l = T_, T[I,_=o o = 0,

Solution of these problems is well-known and can be found elsewhere [30]:

T/l -- exp V_ br_ , c,= 77 vr2 bri '

, ., , a ' h(z) = 1 + z.
q_,, --'- _h ao = T_hT, 2,, = q,_h \ Dri ] = c"_h_'

Gas

The thermal and diffusion problems in the gas are coupled. It is convenient to represent them in
the form

• !
IC i --

_(T;-ko4-_p')- -- 7_ -_- = 0,

_= _ t,,7_) +_ ,7_ = o,

_=1

C'it_?=l #= CTa.

(rv-7o)

Solution of these equations can be sought in the form

1 1
_r_ - k_p' _ - exp A_?, c_ ,-_ - exp A_?.

The eigen values A can be found from the characteristic equation

\a0 /
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This equation has four roots:

Am = 1+i a0 x/E_, )_+2 =-Am, m = 1,2,
vSL_g

_,,_= _1{(_g+_+k_ko)±[(L_-_)_+2k_ko(L_+_)+k_k_]"_}

A non-singular solution in the domain 0 _< U _< 1 can be written in the form:

7_ - k_p' = 1 [A1 sinh (IV/) + A2sinh (A2_/)],
7/

I 1
c, = - [B1 sinh(Av/) + B_sinh (A277)],

U

where the constants of integration A,, and B,_ can be found from equations and boundary condi-

tions (I37-70). The heat and mass fluxes then can be found using relations (III-11). The dimen-

sionless complex amplitudes of these fluxes can be represented in the following form

•f tJgo= _°L+ (Z- 4p')f_, q'go= <g_+ (<- k,p')g_,

f_=l+rl-r______ 2 fT=kT+i(1--s_)rl--(1--SJ r2
sl - s2' 4 (sl - s2) '

q,,= [1-s,_ +i(Leg +kckr)]Xn_cothX_, r_=(1-sr, +ikckr)Amcoth_, rn= l,2.

These relations can be substantially simplified for small concentrations of one of the components,

when we have kr --+ 0 and, correspondingly :

81 ----Leg, 82 : 1,

fc = 1 - AlcothA1, gr = 1 - AscothA_, fT = O,

kc

gc = Leg (1 - Leg) [(1 - Leg) fc + iL% (A2cothA2- A1 cothAJ].

Note that since gc # 0 we have some influence of the concentration profile on the heat flux.

However, this influence is small (since dG should be small at small c_0 ) and can be also neglected.

So in this limiting case we can consider a decoupled system.

b. Equations for Complex Amplitudes

The set of linearized equations for complex amplitudes can be represented in the following dimen-
sionless form

i_' - _' - p(_;+ ¢'o)= 0,
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where

2L_a' +
ao

(i - p) La
Lzi - k,j- l + p"

From a computational viewpoint, it is easier to solve a 8x8 linear algebraic system directly than

to derive an analytical form. We tried two standard routines: L Udecomposition and Gauss-Jordan

[71]. Both work well and provide fast and accurate solution of the above system.
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Chapter V.

Asymptotic Technique For Standing

Waves

For description of the vapor bubble motion in a standing acoustic wave we use the same multi-

scale technique as for bubbles in isotropic acoustic fields. We limit ourselves to the second order

approximation. There are some peculiarities for standing waves which we consider below in detail.

1. Asymptotic Expansions

In the case of standing waves we have additional unknowns compared to the case of vapor bubbles

in isotropic fields, which we expand in the following asymptotic series:

We also have-

x_(t) = k-_o(t_,t,, ...)[1+ _,, (to,h,...) + ...1, (v-l)
(]b(t) "- p,(Too)(plC) -1 [eU1 (t0, tl,...) q-...], (V-2)

4 3
rob(t) = 5_p_[1 +_m (t0,tl,...) +...]. (v-3)

sin{_o[1+_xl +...]}

cos(_oII+_I + ...J}

= sinxo cos [eZoXl + ...1 + cosxosin [eXoXl + ...]

= sin zo + eXoZl cos xo + ...

= cos z0 cos [ez0x, + ...1 - sin x0 sin [eXoXl + ...1

= COS X 0 -- EXOT 1 sinxo + ...

We can substitute these expansions together with expansions of variables used for description

of bubble dynamics in isotropic fields into the governing equations and collect terms near the

same powers of the small parameter e. This yields the following additional equations related to

the bubble translational motion:
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0--_-3_ = y(8),
Oto

a_., Li Um -- Y2),
0% L2c

+p -_-+ ------f-cr,_-g_(3o_-p_)-- g2°_.

The system matrix will be then modified:

(V-4)

Mn

X _r_ n

in -1 0 -p 0

- 2 L,, / ao M_ Mz3 0 0

37in 0 in -37 0

0 0 0 M44 0

0 0 Msa 1 -inlao

0 0 0 0 Hn

0 0 -k..,I,., 0 I,_
0 0 0 -3 0

0 0 0 0 0

-3g, 0 0 0 0

iy=(_
Offrtn

ZOmn

P,_

jm,_

Tmn

qmn

rmn

Mr,,.

Xmn

Ymn

Y_
Y_
7_
7_
Y(_
Y_

Y_
Y_)

0 0 0 0 0

0 0 0 0 0

o 3,rL_/4) o o o
-1 A 0 0 0

0 0 0 0 0

-I 0 0 0 0

0 1 0 0 0

0 0 in 0 0

0 0 0 inxo 2 2-Lp/Lc

0 0 pg,. 0 Mlolo

Mml° = 3K_ L_a_+ (_ + p) in. (V-5)

The matrix Mn has a non-zero determinant, and solution,X_, can be obtained eitheranalyt-

ically,or (which iseasierdue to unwieldly analyticalformulas) nmnerically by standard methods

of matrix inversion.Note that the firstseven equations form an independend subsystem (similar
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to the system for bubbles in isotropic acoustic fields). If solutions X_ ) , j -- 1, ..., 7 are found

then the rest of unknowns can be determined as

_n

x(_)_ I (g.(lO>
_' inxo \52 "''_ + '

inxo)

Let us now be more specific about the structure of the fight hand side vector. As before we

can represent the right hand side terms Y,nn in the form:

Y._. = S_ + N,n. + F,n,,, (V-6)

where S_,,n is generated by slow time scale evolution of linear terms, Nmn is generated by non-
(k)

linear terms, and Finn is the external forcing. Slow time scale evolution components, S_,n, for

k -- 1, ..., 7 are the same as in (IV-37), while the other S_ ) are:

s(£)

L O't,,., j=1

Oxo

tn--l= -o_ ouj,, 1 0(_0uj.)
i=1 ./=1

Uzing the same notation for F,nn we can find that in our case only Fro0, Fn, and F_ °} are

non-zero. As we showed in the previos section to realize the characteristic asymptotic form we

need to satisfy condition (IV-37). We also have the instability of the undisturbed state due to the

gravity. To bring it to the second order approximation we accept the following condition:

g_~ ,P. (v-r)

2. Evolution in Slow Time Scales

To obtain equations describing evolution of the unknowns in slow time scales let us consider

operator M0 :
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/0

-2L 
0

0

0
Mo= 0

0

0

0

-3g 

Note that the first 7

having determinant

-1 0 -p 0 0 0 0 0 0
2 2

4L_,/L_, -I 0 0 0 0 0 0 0

0 0 -37 0 0 37L_,/a_ 0 0 0

0 0 M44 0 -1 A 0 O0

0 M_ 1 -L_/ao 0 0 0 0 0

0 0 0 1 -10 0 0 0

0 0 0 0 0 1 0 0 0

0 0 -3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 Pgr 0

equations form a closed

2 2
- Lp/ Lc

3K_ _ 2L,_/a o

J'-8)

subsystem with a non-zero system matrix, Mo,_,,b,

det Mo,_b =

Thus we can determine using Cramer's rule:

67 (1 - p) k,L_ L_,
(v-9)

detMt_(J) i= 1,...,7. (V-10)X,,,oi)

= det Mo,_ '

All other equations including the slow-time scale evoluton condition for the 7x7 subsystem are

similar to those obtained for isotropic fields (??)-(IV-43).

The last two rows form of the system matrix Mo (see (IV-39)) correspond to equations

L 2
P

=
"-'C

L _
-gr (3a_ PP_o) " v('°)

- +3K,_o2Umo = _mo •

Due to a,_o = 0 we can determine re,no:

2 2 _rn0 "
Lpao

We should notice however, that pg,. << 1. Thus we can set, as in the case with a,_o:

(v-11)

3K_,L_L2cv0)+v( m)=0, #,-,,o 0, m--l,2, (v-12)
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The third and the last condition for the right hand side vector can be obtained if we consider the

eighth equation:

-3_0 = y_%). (v-13)

Weh_veusingOV-4_)._d (IV-40):

det M(o_,8_ 1]<.(3) _-= = _ LTv V(7)

•mo det Mo,_b

Solutions of the system are not unique, and, as in the case with amo, arbitrary X,_o can be

assigned. To specify a solution we set x,no = 0 for m = 1,2, .... In this case we also have (x) = Xo.

3. Linear Approximation

In the linear approximation we have

s.)_ ¢(,) 3 Oao sf )= lo4 sf ) Oxo
lo ao_l' _'lo = ao b)h' a_ oqtl ' --cgt--'_'

I_ = =S = = = = O.n L'Jln _'In

FI(I2)=- 1+_-_- c sin x o, F}ll°)=- 5 1-- a_

Other FI(_ ) are zero.

Thus,

6Qx o
oao =0, --=0.
&, &1

We can explicitlyresolve(HI-39) forthe flrst-modeusing Crarner'srule:

COS X O,

X_ ) = - 1 + _-c de_l sinxo, j = 1,...,7, (V-15)

where AU) are the same as (IV-47) for isotropic fields.

Then we can determine the complex amplitudes describing the bubble mass, position, and

translational velocity:

IL__
=o=_ = 7-_cU_,

Un = 3 [
L,olo [g" (an 2iG L_ ) c°sx°] "a_

43



4. Equation for Rectified Heat Transfer

Since a0

components of vector S in the second order approximation are

1 c%o

The non-zero forcing terms are

-e_ /_+ - _ Re{xoxn}

does not depend on tl, the same is true for all other variables. Thus, the non-zero

S(_) = 370a0 S(_) = 3Oao S(_) - cOxo (V-16)
ao Ot2 ' ao c9t2 ' 9t2"

_o ] g Iu,, - i cos=ol=+ {=o=,,}cos=o+

F{ lo) K.ll )1 -- p 3 i:_e {all } In1 {all } EOSX 0

3( 2K_,l_ im{xn}) xosinxo.+a R_ {x11} 4

The components of non-linear term N2, (V-6) can be found in the second-order approximation

from quadratic nonlinearities. The non-zero components include modes 0 and 2 which corresponds

to the average fluxes and nonlinear doubling of the oscillation frequency. To obtain the equation

of rectified heat transfer it is sufficient to consider just zero-mode vector N20. After some algebra

one can find the components of this vector in the following form:

N(28o) = 3Re{ail_n},

N_ ) = 0,

N(,_o, = __32 Re _all- P_;1])U,I •

(V-lr)

Components _r(k) k = 1,..., 7 are similar to those for isotropic fields (IV-49)._'20 ,

Therefore from conditions of existence of periodical solutions (IV-42) and (V-12) we can obtain

the following equation for rectified diffusion in a standing acoustic wave:

_X0&0 = Wda0,_0), -- = _(a0,x0), (v-is)
&2 &_

w_(_o,xo) -
-1

ao (1+ 4(1-p) L_L_ Msa - --_M4,) x

(1 4pL_M_ L' Maa_ /' 1N(a' L_rt'D2o)+N_']
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Chapter VI.

Numerical Methods

For computation of bubble dynamics in acoustic fields we applied the following three numeri-

cal methods: a purely numerical integration of the detailed governing equations, the numerical-

analytical method, and the analytical solutions described above. Each of these method has its

own advantages and deficiencies, and the best method to use depends on the task performed.

For example, for computation of bubble dynamics during relatively short times (of the order of

hundreds of oscillation cycles) a purely numerical integration provides the best results in terms

of accuracy and reasonable utilization of computational resources. This method, however, is not

applicable for computation of bubble dynamics during the many thousands, and even millions

of oscillation cycles required for bubble stabilization in an acoustic field. In this case the best

results were obtained using the numerical-analytical method, which approximately utilizes the

same computational resources as computations using analytical formulae. Despite the fact that

the numerical-analytical method is much faster than the straight-forward numerical integration

(computation of a test case of 3600 cycles of bubble oscillation required 30,000 times less CPU

time for the numerical-analytical method than for the straight-forward method), it is still too slow

for parametric studies such as the investigation o£ the equilibrium states, and the investigation of

dependencies of bubble parameters in acoustic fields on multi-parameter inputs (say the accom-

modation coefficient, liquid superheat, acoustic amplitude, and frequency). For this task the best

method is the analytical method.

We have developed several codes based on ditTerent models of vapor-gas bubbles. However here

we describe the methods for pure vapor bubbles only which were the best tested and validated by

comparisons with each other and with the methods used by other authors.

1. Straight-Forward Finite Difference Scheme

The system to be solved can be considered as a system of two algebraic equations and five time-

derivative equations that include the mass conservation equation at the bubble surface (IV-l) to

determine 5, the modified Rayliegh-Plesset equation (IV-2) to determine _bl= , the vapor energy

integral (IV-2) to determine p_, and the two energy equations, (IV-5) and (IV-6), for the vapor

and liquid temperature, respectively. Among the five time-derivative equations, the first three are

ordinary differential equations, while the last two are partial differential equations. To solve the
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partial differential equations,one can apply a finite differenceschemefor the spatial derivative
terms in equations (IV-5) and (IV-6). The infinite computational domain required in equation
(IV-6), however,may causedifficulty in numericalimplementation. Fornumericalconvenience,we
can further transform equation(IV-6) by specifying_ = l/r/, such that the computational domain

of equation (IV-6) is from 1 to 0. In terms of _ the liquid energy equation (IV-6) becomes

By applying the second order central differencing scheme for the spatial derivative terms, one

can rewrite equations (IV-5) and (VI-1) as

= + + rl5, (T_) + (r/26, (T.))

where

_- = -_ _¢_(T,)- -_ (a¢-w,_¢')_ (T,)+
_l

()i+_-(),-, 2 [(_- _, 0,-(),__],= _+_- _,-_ ' _" ()' = _i+_- 6-_ ¢, - ¢_-_

If there are N_ and Nz nodes used for discretization in equations (VI-2) and (VI-3), respectively,

then equations (VI-2) and (VI-3) can be considered as two sets of ordinary differential equations

in the unknowns. Arranging a, wta,pv, and all T,,_ and Tu into a single vector of-unknowns X, we

can write equations (IV-1)-(IV-2), (VI-2), and (VI-3) in the form:

:_ = v(x,t). (vI-4)

The vector function F is shorthand for the fight hand sides of the equations. A fourth-order

Runge-Kutta scheme is applied to integrate equation (VI-4) over time.

To start the time integration, the initial condition for the temperature distribution inside the

bubble and in the liquid need to be specified. Usually we assume that the vapor and liquid

temperature are initially uniform,

T_l_o= 74=0 = T_. (w-5)

During the time integration the boundary conditions for the temperature are satisfied by enforcing"

the zero flux at r/ = 0, and the temperatures at the interface and far from the bubble:
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T_I,=;= _1_=_= T_, Td___0= Too. (vI-6)

To satisfy the zero flux boundary condition we specify 7_vl --- 7_v2.

To obtain the bubble wall temperature, Ta, we solve two algebraic equations (IV-3) and (IV-4),

where we use the following approximations for the saturation pressure and temperature consistent

with the Clausius-Clapeyron equation:

Since (IV-3) and (IV-4) are nonlinear equations, an iteration procedure to determine Ta is required

using pv, qva, and q_a obtained from the previous time step. We use the following converging scheme:

_+, = E,(_) (vI-7)
E_(T:) '

where the superscript shows the number of iteration (for initial approximation we use the value

of T, from the previous time step), and functions EI(T_) and E2(Ta) are calculated using the

following formulae:

E,(T.)

E_(TD = Eo(T.) + 1 ( A, A, (42 + (1) 2
; .17iv" - l?N,,-1 4((, -'_')'l) )'

T_ _ To,, p, la + "_ _9(T:'P') f (T,,p,),

_vs(Too)_ T, - T,(p,) f (T.,p,)
T_,

_(To,pO =

T_
_(T,,- T,(p,,))LeXP'[Tr'_,l--T-:_Jf-exp_[Tr"_, 1 T,(p,D)}]"

r f f To<>' l f ( T_
f(Ta,p,,) =

Since the thermal boundary layers on both sides of the bubble wall are very small and the

gradient of temperature is usually large, a very fine grid inuzt be created near the bubble wall on

both sides to adequately resolve the thermal boundary layers. To avoid the use of large number

of grid points in the computational domain, an unequal-spaced grid which has highly clustered

points near the bubble wall on both sides is applied. Figure VI-1 shows a typical temperature

distribution during the bubble oscillation and the grid distribution along the space.
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Figure VI-I: Typical temperature profile inside (rt < 1) and outside (77 > 1) a vapor bubble

oscillating in an acoustic field. The dots on the curve correspond to nodes of the computational

grid.

2: Numerical-Analytical Method

In this section we describe a numerical algorithm suitable for solution of the linear partial differ-

ential equation (IV-66). For convenience, we rewrite this equation in the form,

"_J ','_,t' _) :o. ,. (.-=)
where

e2a_) V = _ - 1 c31n ao
1

= L_.l 772 _

The conversion, u = rpt(o°) transforms this equation into the one-dimensional heat conduction

equation,

- _ = o, (vi-9)

with the same boundary conditions given by equation (IV-68).

We discretize time and the radial coordinate and approximate the first and the second spatial

derivatives with second order of accuracy:
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_u

T;u
(w-_o)

(_2U

where:

sl

&

G1

G2

2

(_.+1 - ,.) (,.+1 - ,.-1) '
2

(_rn -- _Trn-1) (_m+l -- _m-1) '

_s_ (,7,.-,Tm-J,

_s2 (_+_ -_).

Applying the first order approximation to the time derivative and writing equation (VI-9) in

the implicit manner results in a system of algebraic equations of the form,

where

-au.+ 1 + ZuZ - " .-1'TZtm_] ---- It m (vI-_2)

c_ = S1At/_ + GlpmAt,

"y = S2At/v - G2p._At,

= l+a+7+p.At/n..

The tridiagonal system (VI-12) can be solved effectively by using a standard algorithm [71].

It assumes that the values of function u at the neighbouring nodes are linearly dependent,

u" = A_-,u",, -1 + Bin-1. (VI-13)vn--1

Substituting equation (VI-13) into (VI-12) one can find that the coefficients Am, B,n satisfy

the following recurrent relations:

n-1

a ,Bm um + 7B._-I (VI-14)
A_ = _ _ "yA.__I = _ - "yA__ I

We assume that the temperature at the bubble boundary is presribed, i.e., A1 = 0, B1 = ua (t.),

while at "infinity" the heat flux is zero, i.e. UM = BM/(1 -- AM). Then, by applying successively
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equations (VI-14) one can find the coefficientsA, B and then back substitute them to find the

sought function u. The outlined numerical procedure is absolutely stable because the coefficients

Am are less then unity, IA_I < 1. This statement can be proven by deduction, since A1 = 0 and

/3-7= 1 +o_ > a.

The index M corresponds to the right boundary of the computational domain. The size of the

computational domain expanded in time as the thickness on the bubble's boundary layer grows

up. We used the following algorithm to track this expansion. First, we specified the dimension size

L of the array coresponding to temperature, u = T/U, and we set, M = L/2, initially. Second, we

computed the temperature distribution using equations (VI-13) and (VI-14) for the index range:

1 _< rn _< K, where K = M + 10. Then, we computed the spatial derivative &u/&/and found

index J such that M < J < K and I(Ou/o_)jI < 10 -8. We updated the value of index M to J

on the new time step. This procedure was repeated until index M reached the value of L - 10.

When this happened the grid size was doubled and a cubic spline fit was applied to compute the

temperature distribution corresponding to the new grid.

The dynamics of the mean bubble radius was then computed using the fourth-order Adams'

extrapolation scheme. When solution for the average bubble radius was found, we computed the

current bubble radius by superposition of the third-order solution for the mean bubble radius and

the linear solution for the fast oscillating part:

a(t) = a_(r) (1 +e Re(ane/_t)). (Vi-lS)

3. Analytical Solutions

The analytical solutions were used mostly for investigation of the parameter space. Computation

of the complex amplitudes of oscillation were performed analytically for the case of a pure vapor

bubble and numerically, using LU-decomposition, for vapor-gas bubbles. The results for vapor-gas

bubbles were verified by comparing the limiting case of pure vapor bubble with the case of vapor

bubbles and with physical interpretation of the computed patterns. The results for vapor bubbles

including the first-order and the second-order approximations were validated against limiting cases

obtained earlier [2] when the surface tension, liquid viscosity and compressibility were neglected.

To plot the phase portraits of the autonomous systems of type (V-18) were used and integrated

with the Runge-Kutta 4th-order method.

For computation of the mean radius evolution in the third-order approximation nonlinear

integro-differential equation (IV-63) was integrated using a Runge-Kutta 4th-order scheme with

computation of the right hand side using an iterative scheme and evaluation of integrals based on

a Gauss-type quadrature for modified Chebychev polynomials C,(x) (polynomials orthogonal on

[0,11,not [-1,11):

%/1 -- X 2

The weights and nodes of the Chebychev polynomials were found using standard procedures of
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orthogonalization (e.g., [71]). In most cases 10 weights and nodes provided sufficient accuracy

(tested by comparison with exact solutions for relative error below 10-6).

After determination of the mean radius evolution, the current bubble radius was found by

superposition of the first-order linear oscillation and the mean bubble radius according (VI-15).

D Comparisons of Bubble Dynamics Computed by Vari-

ous Methods

For validation of the numerical methods, we compared them with each other and with published

computational results on vapor bubble dynamics in acoustic fields from Hao & Prosperetti (1999)

[35], who used a straight-forward pseudospectral numerical method. The model used in Ref. [35]

ignores the nonequilibrium phase transitions and is applicable for a low frequency field. To obtain

a 'quasiequilibrium' scheme in our model, we set fl = l0 s (for the computed case of 1 kHz acoustic

field and millimiter size bubbles the difference between computations with fl -- 1 and fl = l0 s

were very small). Comparisons between all methods are shown in Figures VI-2 and VI-3.

The straight-forward numerical computations fall on top of the cited results [35]. The other

two methods give results within 10_ of relative error for maximum deviation with the straight-

forward computations. Note that much smaller error (about 2%) was obtained for the mean bubble

radius computed using the numerical-analytical method and the straight-forward methods. This

is related to the use of formula (VI-15) which neglects the second and the higher harmonics of

oscillations, and may be improved by inclusion of the second and the third-order terms in (VI-15).

The lower curve presented in Fig. VI-2 was obtained using initially nonuniform (quasisteady, or

hyperbolic) temperature profile in the liquid, which demonstrates the importance of selection of

proper initial conditions.

Figures VI-4 and VI-5 show that agreement between the results obtained using the numerical-

analytical method, the analytical solution and the straight-forward method is good.
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Figure VI-2: Comparison between computations based on the asymptotic theory with the initial

quasisteady temperature profile in the liquid (the lower solid curve), initial uniform temperature

profile in the liquid (the upper solid curve), and the numerical results of Hao & Prosperetti

(1999) (the dashed curve), which are on top of our results using the purely numerical method and

quasi-equlibrium scheme of phase transitions. The bubble radius is normalized with the primary

resonance radius, 2.71 ram. The initial mean radius in the computations using the present theory
is 0.1 ram.

t"

IJ

iI_llmg_m N W ^

, /

wll_.

iili

Io
• I_ ilia.,o

Ill .It

I,I1_i

J

,p._-

Figure VI-3: Comparisons of computations using the purely numerical method (the dashed curve),.

numerical-analytical method (the thick solid curve), and the third-order analytical solution (the

thin solid curve).
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Figure VI-4: Comparison between computations using the third order asymptotic theory with the

initial temperature jump (¢_0 = @2o (a_,,), a_, = 98/_m; the solid curves) and purely numerical

simulations with the initial bubble radius 100 #m using the detailed equations (the gray region

and the dashed curve). Letters L, M, and U near the curves relates to the lower, mean, and upper

slowly changing bubble radius. The curves L and U were computed by addition and substraction

of the amplitude of bubble oscillation predicted by the linear theory. The numerical-analytical

method gives results close to the straight-forward computations.
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Figure VI-5: Comparison between the purely (the dashed curve) and the numerical-analytical

method (the solid curve). The other notations and computation parameters correspond to the

case shown in the previous figure.
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Chapter VII.

Analysis of Linear Bubble Dynamics

in Acoustic Fields

1. Vapor Bubbles

Computations for water and helium of vapor bubble dynamics in acoustic fields were carried

out for a range of bubble sizes, frequencies, and amplitudes appropriate for the present theory.

Since water and helium vapors deviate from perfect gas behavior (particularly true for helium

at low temperatures) the property values given in Table 1 were utilized in computations. Other

quantities, such as the gas constant and the specific heat ratio, were derived using the perfect gas
relations.

Table 1. Properties of water and helium used in com _utations
Parameter Unit

Too K
kPa

_OVO0

p_ kg/m3
kJ/(kg.K)c_

ct kJ/(kg.K)

Av mW/(m-K)

Al mW/(m.K)

/-tt #N-s/m 2

c _/s
z
cr mN/m

Water Helium

373 4.2
,=

101 100

0.597 16.3

958 125

2.03 2.2

4.22 6.76

24.8 2.3'

680 27.1

279 3.57

1.54 0.18

2.26 0.0209

58.9 0.1

Figures VII-1 and VII-2 demonstrate typical dependences of the amplitude, Jail], and phase,

arg(au), of bubble radius oscillations on the average bubble radius, a0. Computations were per-

formed using (IV-46) and (IV-47) for water at 1 arm and an acoustic frequency of 60 kHz. Qual-

itatively the dependence is the same for water at different pressures and frequencies or for other
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liquids. Two limiting cases exist: the case of equilibrium (or more precisely quasi-equilibrium)

phase transitions where we assume that the vapor pressure is equal to the saturation pressure at

the interface temperature, and the case of the absence of phase transitions where _ = 0. The equi-

librium case can be formally obtained if we set _ = co despite the actual value of _ cannot exceed

1. The computed curves show that the linear response of the vapor bubble to acoustic excitation

strongly depends on _. The two limiting cases determine two resonances. For/_ --- 0 we have only

the primary resonance due to the liquid inertia and the vapor elasticity typical for gas bubbles.

In the case of equilibrium phase transitions an additional low-frequency ("second") resonance due

to phase transition and surface tension takes place. For water vapor bubbles at moderate/_ the

amplitude of oscillation at the primary resonance is smaller than at the second resonance. For

small _ the bubble response curves show strong primary resonance. Note that at _ = 0 formally

there exists the "second" resonance at a _ 2a/(3ps). However to reach this resonance we need to

have Ap = --3pa which corresponds to negative liquid pressure. This fact was discussed earlier by

Khabeev [30]. Moreover, results for small bubble sizes below the theory limit line in Figures VII-1

and VII-2 violate assumption (III-37) and are not justified by the present theory.

To obtain more insight into the nature of the vapor bubble resonances, it is convenient to

represent the bubble oscillator in the form:

a' = -p', (VII-l)

where _ is the dissipation coemcient, w, is the bubble natural frequency, and a' and p_ are the

nondimensional bubble radius and driving pressure. /_ and wn depend on the mean bubble size,

a0, the driving frequency, the accommodation coefficient and other properties of the liquid and its

vapor. The natural frequency w,_ can be found from equation (VII-l) by substituting there the

expression for the driving pressure and the linear solution for the bubble radius. Fig. VII-3 shows

w, (a0; 8). It is seen that the natural frequency of vapor bubbles is very different from that of gas

bubbles, and it is strongly influenced by 8. At very small _ a vapor bubble behaves similar to a gas

bubble, while at relatively large _ (in the computed case _ _> 0.1) the bubble natural frequency is

below the driving frequency for any bubble size, and there are no resonant sizes at all (for smaller

acoustic frequencies there are two resonant sizes for large _ also). For bubbles smaller than some

critical size, we have w_ < 0 which is an effect of surface tension specific for bubbles with phase

transitions. Such bubbles are exponentially unstable in the absence of external forcing, while they

can be stabilized by an acoustic field and behave similar to the bubbles of resonant frequencies

much smaller than the driving frequency.

Figure VII-4 illustrates the temperature profiles inside and outside the bubble at a fixed mo-

ment of time (to = 27rn). Computations were made for 50 #m bubbles using analytical solutions

(IV-23) and (IV-23). All parameters were the same for all plotted curves, except for the value of

the accommodation coefficient. It is seen that in the illustrated cases, _ substantially influences

the temperature distribution in the vapor. The influence of 1_ on the temperature in the liquid

is less, and there is no visible difference between computations with _ -- 0.04 and _ ---- oo. At

smaller _, the temperature gradients in the vapor are much higher than those predicted by the

quasi-equilibrium theory, and the heat flux in the vapor can be comparable with the heat flux in

the liquid. This affects the interface temperature and the temperature profiles in the liquid.
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Figure VII-l: Relative amplitude of the forced vapor bubble radial oscillation in a 60 kHz acoustic
field. The numbers near the curves show the values of the accommodation coefficient, ft. The curve

marked as "equilibrium" is computed using the quasi-equilibrium scheme of phase transition.
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Figure VIi-2: Phase shift between the driving pressure and forced radial bubble oscillation. No-

tations are the same as in the previous figure.
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Figure VII-4: Temperature profiles predicted by the linear theory at various values of the accom-

modation coefficient shown near the curves and the quasi-equilibrium phase transition, marked as

"equilibrium". Profiles are computed for a vapor bubble of radius 50#m at the phase of oscillation

corresponding to t = 0..
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2. Vapor-Gas Bubbles

Computations of the complex amplitudes of forced bubble oscillation were performed for a water-

air system at atmospheric pressure and temperatures close to the water boiling point. Parameters

varied include the frequency of the acoustic field, bubble size, concentration of the inert gas inside

the bubble, concentration of the dissolved gas, vapor and inert gas accommodation coefficients,

and the thermal diffusion coefficient. The basic properties of the system are given in the Table 2

below. All other properties were derived using relations for perfect gas mixtures. The values of

C_ at different concentrations were found by linear interpolation between limiting values for pure

components. The values of _g and )_g were assumed constant, since for the given system these

quantities experience relatively small variations at changing concentration.

(The
Parameter

Table 2. Properties of water-air system used in computation}

empty cells correspond to the values automatically computed or i_0t in use)

Unit Liquid Vapor Vapor-Air Interface

K 373 373 373 373

._ , c_

Pl

C

li

H

dH/dT

a

do'/dT

kPa

mW/(m.K_

kJ/(kg.K.,_ )

k /s

GPa

GPa/K

mN/m
mN/(m. K)

0.011

0.168

680

958

279

1.54

101

37.8

20.4

24.8

2.26

0

6.73

0

58.9

0

Figures VII-5 and VII-6 demonstrate the frequency dependence of the normalized amplitude

and phase of the bubble radius oscillation. Various curves in the figure correspond to various

concentrations of the inert gas inside the bubble with other fixed parameters (the coefficients

kc and kT vary since they depend on the content of the gaseous phase). The case of c/0 - 1

corresponds to the case of a pure gas bubble, and c/0 -- 0 to the case of a pure vapor bubble.

The latter limiting case was verified for consistency with the previous computational results. At

c/0 = 1 strong primary resonance is observed. The amplitude of the bubble oscillation at the

primary resonance frequency decreases at decreasing concentration of the inert gas. In the range.

of inert gas concentrations between 1 and 10% an interesting effect of low-frequency resonance

(or, rather, instability) is observed. As can be seen in the figure, the amplitude of a 10 #m bubble

oscillation drastically increases at c/0 --- 0.04 and frequencies of order 1 kHz. This resonance is:

controlled by the surface tension and the two-component nature of the bubble content.
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This resonance was first reported by Nagiev & Khabeev [65]• They explained it by the qualita-

tive difference between the low-frequency response of the vapor bubble, which oscillates in phase

with the forcing pressure (due to the effects of surface tension and evaporation-condensation main-

taining the vapor pressure on the saturation line), and the bubble of non-condensable gas, which

oscillates in anti-phase to the forcing pressure (due to stiffness of constant mass gas). The bubbles

containing a mixture of non-condensable gas and vapor can oscillate in any phase in between 0

and _r with the external low-frequency field depending on the concentration. At some critical con-

centration [65] (in our case c_0 _ 0.04) a switch occurs between these two qualitatively different

cases which causes the type of resonance behavior shown in the figure. This mechanism is different

from the condensation-evaporation 'second' resonance for pure vapor bubbles [32, 34, 35].

Note that at very low frequencies the gas-vapor bubble will oscillate in phase with the forcing

pressure due to dissolution of the inert gas. Theories which neglect gas diffusion in the liquid

[65, 66] provide different low-frequency limits for the phase and amplitude of the bubble oscillation.

We compared our computations with published results of other authors [65] and found qualitative

agreement for the range of frequencies over which diffusion in the liquid is negligible. We also

found some quantitative differences, which can be explained by the differences in the models used.

Figures VII-7 - VII-10 show the dependencies of the amplitude and phase of the bubble radius

oscillation on the mean bubble size for a fixed frequency. Computations were performed for

different contents of the gaseous phase. In all cases the 'second' resonance is observed in addition

to a strong primary resonance. Generally, the second resonance is caused by the effects of surface

tension and phase transitions. In the limiting cases of c_ = 1 and c_0 -- 0, phase transitions are

due to dissolution and condensation-evaporation of one-component gas (or vapor). The phase

transitions of a two-component mixture are more complex and lead to anomalous behavior of the

'second' resonance as discussed above. The characteristic times of condensation are controlled by

the liquid thermal diffusivity and times of dissolution are controlled by the liquid mass diffusivity

which are usually of different orders of magnitude (Lewis numbers of liquid are usually large, Let >>

1). This creates two distinct size/frequency scales: 1)ao _< Let-1/2Lrz and 2) ao >> Le[1/2LT_,

where the inert gas can be considered as soluble or non-soluble, respectively.

Effects related to gas dissolution can be important in the low-frequency/small-radius range

ao _< Le_'I/_LT_. In range ao >> Le_-l/2Lr_ we do not expect such parameters as the inert gas

accommodation coefficient, the Henry constant, and the concentration of the dissolved gas to

influence bubble oscillations. To demonstrate this point we performed computations at different

/3i and H with other parameters fixed for different frequencies (see Figures VII-11 and VII-12).

First, we found that the effect of non-equilibrium dissolution of the gas can be observed only

at extremely low fli. Already fli = 10 -s produces results close to the quasi-equilibrium phase

transition of the inert gas (this case formally correspond to/3i -- c<_) . However, the models of

non-soluble gas and soluble gas show a difference in the low frequency range a0 _< Le[1/2LTI.

If the values of fli below 10 -6 (which means that less than one-millionth part of gas molecules

hitting the interface experience phase transition) are not of interest, within the frequency range

ao _ Le_-l/2Lri (and therefore everywhere) the quasi-equilibrium scheme of phase transition for the

inert gas is acceptable. The effect of the Henry constant on the bubble oscillations is appreciable
• -1/2 . . . - J./'_
m frequency range ae _< Le I LTt and negligible for frequencms of range a0 >> Let LTZ. Note

that for 10 #m bubbles the effects of gas dissolution are negligible at frequencies of the order 100
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Hz. The same is true for larger bubbles and higher frequencies. Therefore a simplified model

neglecting the effects of gas diffusion in the liquid and dissolution is applicable for a wide range

of bubble sizes and frequencies. For slow processes, such as rectified diffusion, the diffusion and

phase transitions of the inert gas are important in slow time scales, but can be neglected in the

fast time scale that is inversely related to the frequency of the field.

While the effect of nonequilibrium phase transition for the inert gas is negligible, the effect

of the nonequilibrium phase transitions for the vapor component is strong in high frequency

acoustic fields. Similarly, for a gas-vapor bubble with appreciable vapor component, the vapor

accommodation coefficient influences the bubble dynamics (Figure VII-13-VII-14). Although the

value of the accommodation coefficient cannot exceed 1, we made computations using very high

values of this coefficient to determine if the scheme of quasi-equilibrium phase transitions (the

bubble interface temperature is equal to the saturation temperature) is applicable. It is seen that

such computations indicated as 'equilibrium' are close to the computations with fl_ = 1. Curves for

j3_ = 0.1 substantially differ from the equilibrium curves. Therefore the quasi-equilibrium scheme

of phase transitions is applicable if 13_ is about unity. For very small radii, the effects of the inert

gas dissolution create a resonance discussed above. Such influence of the vapor accommodation

coefficient on the character of forced vapor-gas bubble oscillations suggests that measurements of

this coefficient can be performed not only with pure vapor bubbles, but with vapor-gas bubbles

with substantial inert gas content.

It is generally accepted that the nonequilibrium character of condensation/evaporation should

be taken into account only for high frequency fields (e.g. [35]). This also depends on the bubble

size, and, as we found, on the concentration of the inert component. As an example we show in

Figures VII-15 and VII-16 computations of a 10 #m bubble response to acoustic perturbations over

a wide range of frequencies with concentrations of the inert gas near the critical value (c/o = 0.05).

It is seen that the second resonance frequency and the bubble complex amplitude at frequencies of

about 1 kHz depend substantially on the value of the vapor accomodation coefficient for fl_ _< 0.1.

The dependence of the amplitude and phase of vapor-gas bubble oscillation on the accommoda-

tion coefficient can be used for determination of the value of/3v. For efficient diagnostic procedures

the bubble size, the frequency of the acoustic field, and the concentration of the inert component

should be selected from the range corresponding to the highest sensitivity of bubble dynamics to

the value of this coefficient. An example shown in Figures VII-I7 and VII-18 demonstrates depen-

dencies of the amplitude and phase of forced bubble oscillations on l?v at different concentrations

of the dissolved gas, which can be selected arbitrary for a nonequilibrium vapor-gas bubble. It is

seen that for 13_ _< 0.1 the parameters of oscillations strongly depend on D_ for small and moderate

c-re. Larger/3. can be determined from the bubble dynamics at relatively small c_0 since at higher

c-/0 the parameters of oscillations are not influenced by the value of/3_. It is interesting that the

maximum slope of the curves for the amplitude of oscillation at ]3_ _ 1 is realized at intermediate

values of c/0 (in our case c_ _ 0.1), which indicates that addition of 10_0 of inert gas can be

beneficial for diagnostics of/3v.

If 13_ _< 0.1, then its detection can be performed using the dynamics of bubbles of various

sizes. However, for detection of larger values of 13_ smaller sizes provide better resolution. The

curves shown in Figure VII-19 and ?? demonstrate that in the specified range of parameters, the

detection of ]3_ for water can be problematic for bubbles of radius 30 #m and higher if ]3_ >_ 0.4.
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Figures VII-21 and VII-22 showthat for the best resolutionin determination of relatively large
fly, the frequencyof the acousticfield shouldbe properly selected.Both high frequencyand low
frequencycurvesshowa weakdependenceon fly in region/_ > 0.1, while intermediatefrequencies
of the order 50kHz provide the highestsensitivity to the valueof the accommodationcoefficient.

The influenceof the Soret-Dufour,or thermodiffusion,effecton bubble forcedoscillations in
an acoustic field can be determinedby variation of the thermal diffusion ratio, kT, or related

thermodiffusion coefficient kc (III-12). Figures VII-23 and VII-24 display dependencies of the

amplitude and phase of bubble radius oscillation on the mean bubble radius computed at different

values of kc. From (III-13) we have kc = 1.37. Variation of kc over a moderate range (limiting case

kc = 0 corresponds to the absence of the Soret-Dufour effect) shows its appreciable influence on

the vapor-gas bubble response, especially for sizes near the primary resonance value. One possible

applications of this observation is measurement of the thermodiffusion coefficient using vapor-gas
bubble dynamics.

To demonstrate the Soret-Dufour effect the dimensionless temperature and concentration pro-

files realized inside an oscillating bubble at times wt = 2rn are shown in Figures VII-25 and

VII-26. The bubble size is selected to be close to the primary resonance at the given frequency.

The computations were performed for different values of kc. The results show that larger gradients
of temperature and concentration inside the bubble are realized due to the Soret-Dufour effect.

The amplitude of concentration oscillation near the bubble surface increases with kc. This may

explain the increase of the amplitude of bubble oscillation because larger amounts of inert gas
near the surface make phase transition more difficult and increase the stiffaaess of the bubble.
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Figure VII-5: Relative amplitude of the forced vapor-gas bubble radial oscillation for 10/zm bubble

in water as a function of the acoustic frequency. The numbers near the curves show the value of

the inert gas concentration inside the bubble.
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Figure VII-6: Phase shift between the driving pressure and the forced vapor-gas bubble radial

oscillation for 10/zm bubble in water as a function of the acoustic frequenc3 _. The numbers near

the curves show the value of the inert gas concentration inside the bubble.
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Figure VII-12: Phase shift between the driving pressure and the forced vapor-gas bubble radial

oscillation for 10/_m bubble in water as a function of the acoustic frequency. Computations are

performed for different values of the inert gas accommodation coefficient, f/i, and the Henry con-

stant, H (the values are shown near the curves). The thick curves marked 'equilibrium' correspond

to quasi-equilibrium phase transition of the inert component.
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Figure VII-17: Relative amplitude of the forced vapor-gas bubble radial oscillation for 20 #m
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near the curves show the frequency of the acoustic field.
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Figure VII-23: Relative amplitude of the forced vapor-gas bubble radial oscillation in 60 kHz
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the thermodiffusion coefficient kc.
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Figure VII-24: Phase shift between the driving pressure and the forced vapor-gas bubble radial

oscillation in 60 kHz acoustic field as a function of the bubble radius. The numbers near the curves

show the value of the thermodiffusion coefficient kc.
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gas bubble oscillating in 60 kHz acoustic field. Profiles correspond to times wt = 27rn. The numbers

near the curves show the value o[ the thermodit_usion coefficient kc.
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Chapter VIII.

Analysis of Nonlinear Bubble

Dynamics in Isotropic Acoustic Fields

1. The Equilibrium Radius and Its Stability

There exists a possibility of stabilization of the vapor bubble radius in an acoustic field. Complete

stability analysis cannot be performed based on asymptotic theory, since the residual terms, such

as in equation (IV-63)can cause a growth or decay of bubble radius in slower time scales than

that taken into account (secular terms). However, if the steady radius exists, then it is stable in
any slow time scale. If it does not exist then there is no stable radius in low order approximations.

That is why low order approximations can provide valuable information on the bubble stability.

Everywhere below when we speak about stability we mean stability within the framework Of the

third-order theory, which can potentially be violated in slower time scales.

Let us define the steady radius, a., as a zero of function W2 :

w_(a.) =0. (vm-1)

Consider a small perturbation of a0 near this radius:

a = a0 - a.. (VIII-2)

Linearizing (IV-63) near ao = a° we find:

9(2

Or [ Jlw:a eL_V. ¢_ , Oa(<) dC
0

dW_(_o)I , a¢_(o_)Iw: - v. = v(_.).

Solution of this equation can be obtained using the forward and inverse Laplace transforms and

can be represented in the form:

(viii-3)
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where bl and b2 are constants depending on initial conditions, while z],2 are the roots of the

characteristic equation:

1 , •/1 ,:2/'2 l/'2(T_t2

Zl,2 = -_eL_ V.¢20 . =i=V_ _,z v. _20. + W.'. (VIII-4)

If W_ > 0, then both roots zl and z2 are real and have opposite signs. Since the function

e_2erfc(-z) exponentially grows for real positive z --_ oo, the steady radius a. is unstable. This

conclusion is consistent with the result of the second-order theory (if we set e = 0 in (VIII-3)). If

W. _ < 0 the second-order theory shows that a. is stable. In the third-order theory the stability
! 1 ,:2K2 l/"2tT_12 _r

criterion is W.' < -_ _._ ,. =20. • This provides largz;,2l > _, necessary for exponential decay of
1 _2/'2 l/2eT_'2 ! 7r

(T). In the case --_ "-'8 ". =m. < W.' < 0, one can check using the criterion largzl,21 > Z that
I I

a. is stable at ¢20. > 0, and a. is unstable at (I)20, < 0.

The third-order approximation provides the following asymptotic expansion near the stable

radius at large times:

= a. + w:v + <Y. 2 w, ] \ ; (viii-s)

2. Results of Computations

Even for a fixed substance and ambient conditions, such as for water at 1 atm ambient pressure

and 100°C, classification of the vapor bubble behavior in acoustic fields is difficult, since three

parameters of the pressure field w, PA, and ,Ap, the initial radius of the bubble introduced into the

field, am, and the unknown _ form a 5-dimensional parameter space. First we consider/kp = 0.

It is known from previous studies and computations [67, 38] that in this case there exist two

equilibrium average radii of the vapor bubble, a..

The lower equilibrium radius is unstable and is known as the threshold radius, a_u, since bubbles

with initial size a_n < a_ collapse, while bubbles with a_, > a_ grow in the acoustic field. The

upper equilibrium radius, a_, is stable if the stability criterion obtained in the previous section

holds, and for bubbles with a/, > a_h their radii tend to a_ at large times. This is seen from the

phase portrait of Equation (IV-49) plotted in Figure viII-1. The growth rate, dao/dt = e2Oao/&r,

is zero at a0 = a.. In the illustrated case the maximum growth rate is realized at small and high

(of order 1) values of 8.

In the case of small fl the growth rate has a sharp peak due to the phase shift and a high

amplitude of the resonance bubble oscillations (see Figures VII-1 and VII-2) producing non-linear

effects. However, for _ = 0 the rate of evaporation/condensation is zero and the growth rate is

zero. That is why the growth rate at very small values of the accommodation coefficient, such as

= 0.0001 in Figure VIII-1 is smaller than for fl -- 0.001. Such a non-monotonic dependence of

the growth rate on the value of the accommodation coefficient was noticed earlier [2]. The case

of high fl demonstrates that the threshold and stable radius can be substantially smaller than the

primary resonance radius, since they are determined by the second resonance (see Figure Vii-l).

For an acoustic frequency of 60 kHz and _ from 0.01 to 0.1 the maximum of the growth rate is

located between the two resonance bubble sizes.
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It is interesting that nonequilibriumphasetransitionsmay influencethe rectified heat transfer
at surprisingly low frequencies(kilohertz range,seeFig. VIII-2). The effect is sufficiently strong
near the bubble resonantsizes. However,it should be studiedmore carefully near the second
bubble resonancebecausethe present weakly nonlinear theory does not cover that range and only

the neighborhood of the primary resonance is plotted in the figure.

Figure VIII-3 shows the relation between a. and the sound amplitude at the bubble location

for various/_. For each/3 there exists a minimum of the plotted dependence which determines
D(mln)the amplitude threshold of vapor cavitation PA(*an). For'low intensity sound with PA < - A

any bubble will collapse due to the effect of surface tension. For PA > P(Ami') two equilibrium

radii: unstable, ath (plotted by thin lines) and stable, ant (plotted by thick lines), can be found

from Figure VIII-3. Here and everywhere below stability of the equilibrium radius was determined

using the stability criterion in the third order approximation. However we should notice that in

the computed cases this criterion gives practically the same results as the stability criterion in the

second order approximation, and the transition from stable to unstable radius occurs in very close

vicinity of the extrema of the curves.

Figure VIII-4 shows the same dependence, but for three different frequencies. Note that

although the present theory can be applied to high frequency ultrasonic fields it is limited by

relatively small amplitudes (weakly non-linear approximation, e << 1). For water at atmospheric

pressure and Ap = 0 the theory is limited to frequencies of order 100 kHz and less. For other

substances such as cryogenic liquids the weakly non-linear approximation is valid for much higher

frequencies. Figure VIII-5 shows that for liquid helium near the boiling point at atmospheric

pressure, frequencies of 10 MHz and higher can be described by the present theory. Computations

for liquid helium using the equilibrium scheme of phase transitions and the non-equilibrium scheme

with/_ -- 1 recommended at temperatures above the lambda-point [17] did not show a noticeable

difference for frequencies up to 10 MHz.

The curve for the equilibrium radius at 1 kHz plotted in Figure VIII-4 shows that the stable

radius of vapor bubble for PA "-" 0.1 arm is of order 10 cm and larger for higher PA. This explains

why in the numerical simulations of Hao and Prosperetti [35J performed for frequencies of about

1 kHz, the stable radius was not achieved. The computations were carried out for millimeter

bubbles which are much smaller than the stable size and should grow (even at very slow growth

rates). As it is clear from Figure VIII-4 for higher frequencies stable oscillations can be reached

for millimeter bubble sizes for 10 kHz fields and submillimeter bubbles for higher frequencies.

Positive values of Ap correspond to subcooled liquids. As seen in Figure V/II-5 for higher Ap

higher intensity acoustic fields are required for acoustic vapor cavitation. For high/_ additional

roots of the function W2 (no) can appear, which corresponds to two unstable and two stable radii

related to the primary and to the second resonances [38]. This is illustrated in Figure VIII-6 where

the plotted horizontal line intersects the curve for/? = 1 four times. In the illustrated case for fl

smaller than 0.1 only one stable radius corresponding to the primary resonance is realized.

Negative values of Ap correspond to superheated liquids. In such liquids bubbles with radii

ain > ae, where ae is determined by (III-36) grow in the absence of an acoustic field. As shown in

Figure VIII-7 acoustic fields of relatively low frequency shift the threshold of bubble growth toward

lower sizes. In the illustrated case of 10 kHz for water at atmospheric pressure and _p = -0.01

atm (ae = 116/_m) there is no equilibrium radius, and bubbles grow indefinitely if they exceed

79



the vaporcavitation threshold. It is interestingthat for higher frequenciesat the sameconditions
therecanappearthreeequilibrium radii (onestableradiusandtwo thresholds)in therangea < ae.

In the case of 60 kHz driving frequency illustrated in Figure VIII-8, curves computed at various

values of/3 show local minima and maxima at a < ae.

Figure VIII-8 shows that there exists a qualitative difference between the bubble dynamics at

low, moderate, and high ft. For example for an acoustic amplitude PA = 0.15 atm indicated by the

dashed line at/3 = 0.04 bubbles with radii ain > 29 pan will unlimitedly grow, while for/3 = 0.1

bubbles with initial radii 27 #m < a_ < 82/Jan will stabilize near ast = 51 #m and only bubbles

with ai,_ > 82 _m will grow unlimitedly. The same situation takes place for/3 = 0.01, but with

threshold radii, a(_ ) = 32 #m and ,,(2) _ 98/_m, and the stable radius a_ = 89 #m. Such influence_th

of the accommodation coefficient on the threshold and stable radii of vapor bubbles in acoustic

fields can be exploited for measurement of 13.

This is supported by Figures (VIII-9) - (VIII-10) which demonstrate the bubble dynamics at

different values of the accommodation coeffÉcient with other conditions constant. Computations of

these curves were performed using the second order approximation for the mean bubble radius and

the first order approximation for the amplitude of oscillation. Substantially different signatures

of the bubble dynamics created by different amplitudes of oscillation, growth and collapse rates,

thresholds, and stable average radii can be used for evaluation of/3.

Figures VIII-11-VIII-16 demonstrate the influence of initial conditions on the vapor bubble

dynamics in acoustic fields. In all cases computations were performed using the third order ap-

proximation for the mean radius and the first order approximation for the oscillatory part. The

second order approximation (IV-49) provided the same results as the third order approximation

(IV-63) where ¢20o -----0 was assumed. Condition ¢200 = 0 as well as the second order approx-

imation corresponds to the quasi-steady initial temperature profiles in the liquid. If the bubble

is placed into the liquid of uniform temperature several initial bubble pulsations cause increase

or decrease of the averaged bubble wall temperature which is treated by the present theory as a

jump at t_ = 0. Condition ¢200 _ 0 describesthisjump and can substantiallyinfluencerectified

heat transfer.Due to the initialjump of the non-oscillatorycomponent of temperature the mean

bubble sizestartsto grow or decay proportional to V_. This isdetermined by the sign of the

function ¢20 (ao)which can be negative of positivedepending on a0,/3,w, and other parameters

(seeFigure VIII-11).

Fig. VIII-12 shows the influenceof nonequilibrium phase transitionson the vapor bubble

dynamics in a 5 kHz acoustic field.All computations were made using the numerical-analytical

method with the same (50/zm) initialbubble radius with the only differencein /3.Computed

average bubble radius was superposed with high-frequency oscillationsobtained from the linear

theory. It isseen that the bubble growth ratesand amplitudes of oscillationstrongly depend on

/3.The maximum rates are observed near the bubble resonant radiiwhich alsoare functions of/3.

Computations presented in Figure VIII-13 and VIII-14 shownon-monotonic curves for the

mean bubble radiusfor the case ¢200 = _20 (ain)while for the case ¢200 = 0 which coincideswith

the second-order approximation computations with the same initialradius,a monotonic increase

or decrease of the mean bubble sizewas obtained. It isalso noteworthy that the time required

to achieve the stablebubble size(a_ = 71 #m) in the illustratedcase substantiallydiffersfor the

two differentinitialtemperature profilesin the liquid. However, the time required to reach the
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state independent of initial bubble size is approximately the same for different initial temperature

profiles (of order wt/2_r _-. I03-104). We found that after reaching this state ef_cient computations

for _200 -_ 0 can be performed using large-time asymptotic expression (VIII-5). Figures VIII-13

and VIII-14 demonstrates that the stable bubble size can be achieved for very large times (107

cycles, or about 3 minutes). However, we cannot prove this result mathematically strictly within

the present theory (due to unknown structure of the residual terms. We show it because of a good

agreement with straightforward computations at large times. Note that Hao _z Prosperetti [35]

reported that the bubble radius did not show stabilization at a;t/2_r _., 104 .

This is an interesting effect since estimations of the characteristic time of establishment of the

quasisteady temperature profile in the liquid are of the order t_t_ N a_/_ N 0.1 s, or 104 cycles.

The explanation can be found if we repeat calculations with the initial quasisteady temperature

profile (decaying as 1/r at infinity, which is also an assumption underlaying the second-order

theory with respect to e). In this case the times of stabilization agree well with estimations of

t,t_b, after which the average temperature exponentially reaches the steady distribution. For a

bubble starting to oscillate in a uniform temperature field the unsteady average heat flux due to

the initial temperature jump at the bubble surface decays as t -]/2 which is determined by far

field solution for a point heat source. Asymptotes corresponding to the principal unsteady term

(VIII-5) are plotted in Fig. VIII-14 and they agree welt with numerical results at t :>> ts_b.

The temperature profiles in the liquid corresponding to the case plotted in Fig. VIII-I4 (/3 =

0.04) are shown in Fig. VIII-15. The dimensionless thickness of the 'fast' temperature sublayer, in

the computed case was of order Lrz/ao "_ 10 -2. It is interesting to note that the matching boundary

condition, k_ = T20 + F--m0(see (IV-67)), shows a nonmonotonic behavior - first it increases and

then decreases. This is related to a non-monotonic behavior of the mean bubble radius (see Fig.

VIII-14) and a competition of the first (quasisteady) and the second (memory-type) terms in the

right hand side of equation (IV-69). Fig. VIII-15 shows that even at times of order l0 s periods

of oscillation there exist some difference between the steady and unsteady average temperature

profiles.

The possibility for the existence of steady bubble oscillations near the low-frequency resonance

was discussed in [40, 34] and suggested as an explanation Of the observed small stable bubbles

in liquid helium. The present theory does not predict stable bubbles at 4.2 K and atmospheric

pressure for 52 kHz acoustic field in the range of 15 #m. However computations showed that

at the parameters of the experiment the unstable threshold radius, ata, of order 15 #m can be

realized. Although this radius is unstable, the times of the instability development can reach

several seconds, or hundreds of thousands of periods of oscillation (see Figure VIII-16; the thick

and thin lines correspond to ¢m0 = ¢20 (ai,_) and ¢_0 = 0, respectively) which is of the same

order of magnitude as the times observed in the experiments. In the experimental photographs

some patterns of bubbles in standing waves were seen. Pattern formation in the liquid with vapor

bubbles is a result of strong acoustic field/bubble interaction leading to self-organization of the

bubbles [68, 69, 70]. Such interaction as well as the bubble drift to the nodes or antinodes of the

standing wave can also provide stabilization of bubbles of" a certain size.
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Figure VIII-l: Dependence of the growth rate of the vapor bubble on its radius for saturated
water. The numbers near the curves show the values of the accommodation coefficient, /3. The

curve marked as "equilibrium" is computed using the quasiequ_librium scheme of phase transition.
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Figure VIII-2: The vapor bubble mean growth rate in an acoustic field as a function of the bubble

current mean radius at various values of the accommodation coefficient (the second order theory).
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Figure VIII-3: Relation between the pressure amplitude and the equilibrium mean radius a, for

saturated water. The numbers near the curves show the values of the accommodation coefficient,

/?. The curve marked as "equilibrium" is computed using the quasi-equilibrium scheme of phase
transition.
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Figure VIII-4: Relation between the pressure amplitude and the equilibrium mean radius a.

for saturated water for 1 kHz, 10 kHz, and 100 kI-Iz acoustic fields and for two values of the

accommodation coefficient shown near the curves.
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Figure VIII-5: Relation between the pressure amplitude and the steady radius a. for saturated

(Ap = 0) and subcooled (Ap = 0.003 bar) liquid helium for 100 kHz, 1 MHz, and 10 MHz acoustic
fields.
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Figure VIII-6: Relation between the pressure amplitude and the equilibrium mean radius a, for

subcooled water. The numbers near the curves show the values of the accommodation coefficient,

/3. The curve marked as "equilibrium" is computed using the quasi-equilibrium scheme of phase

transition. The thick lines correspond to the stable equilibrium mean radius while the thin lines

show the unstable (threshold) equilibrium mean radius. The dotted line (PA ----0.12 atm) intersects

each plotted curve at 2 points, except the curve for/_ = 1, which is intersected at 4 points.
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Figure VIII-7: Relation between the pressure amplitude and the equilibrium mean radius a. for

superheated water. The numbers near the curves show the values of the accommodation coefficient,

/_. The curve marked as "equilibrium" is computed using the quasi-equilibrium scheme of phase
transition.
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Figure VIII-8: Relation between the pressure amplitude and the equilibrium mean radius a, for

superheated water. The numbers near _he curves show _he values of the accommodation coefficient,

/3. The curve marked as "equilibrium" is computed using the quasi-equilibrium scheme of phase

transition. The thick lines correspond to the stable equilibrium mean radius while the thin lines

show the unstable (threshold) equilibrium mean radius. The dotted line (PA = 0.15 atm) intersects

each plotted curve at 3 points, except of the curve for fl = 0.04, which is intersected at 1 point.
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Figure VIII-10: Dynamics of bubbles of various initial radii in superheated water at _ -- 1. The

second order theory.
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radius growth in the third order approxSmatSon at various values of the accommodation coefficient

indicated near the curves.
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Figure VIII-12: The vapor bubble dynamics in an acoustic field at various values of the accom-

modation coefficient (the third-order theory). The initial radius in all cases was 50 #m.
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Figure VIII-13: Dynamics of the mean vapor bubble radius in water with ditterent initial temper-
ature profiles near the bubble, ¢200, and di_erent initial radii, ain, shown near the curves. The "

thick lines correspond to the temperature jump at t = 0 (¢200 = _0 (a_,)) while the thin lines

correspond to the initial quasi-steady temperature profiles near the bubble (_20o = 0).

250 _ oua._==W=_-,J

_ 1so

1 100 10000 1000000

Number of Periods of Oscillation, et/2_

Figure VIII-14: The dynamics of the mean (period-averaged) vapor bubble radius in an acoustic

field at various values of the accommodation coefficient and initial temperature profiles in the "

liquid. The third order theory for initial quasisteady temperature fields provide the same curves

as the second order theory. The asymptotes show a two-term asymptotic expansion near the ,_

equilibrium mean radius.
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Figure VIII-16: Dynamics of the mean vapor bubble radius in liquid helium with different initial

temperature profiles near the bubble, ¢2o0, and different initial radii, hi,, shown near the curves.

The thick lines correspond to the temperature jump at t = 0 (¢20o = ¢20 (a_)) while the thin

lines correspond to the initial quasi-steady temperature profiles near the bubble (¢200 = 0),
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Chapter IX.

Analysis of Nonlinear Bubble

Dynamics in Standing Acoustic Waves

A two-dimensional autonomous system (V-18) is convenient for qualitative analysis. In the present

m.odel for fixed temperature (say water at 100°C), the degree of subcooling/superheating, Ap, the

frequency and amplitude of the acoustic field, w-and PA, and the initial bubble radius and position,

ao0 and xm, can be arbitrarily varied. The value of the accommodation coefficient, _, frequently

is not well known for the system under consideration (since it is sensitive to trace !mpurities), and

it can be considered as an unlmown parameter. Finally, the value of g, can be varied over a wide

range. These independent parameters form a 7-dimensional parametric space, which complicates

a parametric analysis. The drag coefficient could also be varied. However, in the present analysis

we kept it constant /_, = 3, which corresponds to the drag coefficient Of a spherical bubble at

high Reynolds numbers.

1. Zero Gravity Conditions
r:_..

We start our analysis by consideration of the vapor bubble stability in zero-gravity conditions,

when we can formally set gr = 0. In this case the function V_(ao, xo) has zeros at nodes and

ahtinodes of the acoustic pressure, sin xo cos xo -- 0. These zeros correspond to stable and unstable

equilibrium positions of the bubble in the standing acoustic wave. The bubble is attracted to

the pressure antinodes, x0 = _ + _rn (n = 0, 1, ...), when z_(ao) > 0, and to the pressure nodes

Xo -- 7rn, when v72(ao) < 0. We will call the bubble 'A-stable' if it is attracted to the pressure

antinode and 'N-stable' if it is attracted to the pressure node. We also define the bubble as 'V-

stable' if its average volume (or a0) is stable in an acoustic field. It is clear that for overall bubble

stability both positional and volume stability should be achieved. Note that the N-stable bubble

will grow or collapse since the local acoustic pressure is zero at the pressure node and the bubble

is V-unstable in the absence of the acoustic field. This is consistent with Eq.(V-19) that gives

W2(ao, _rn) -- W2o(ao), where W_o(a0) is a monotonic function. Therefore, only A-stable bubbles

corresponding to W2(ao, _ + 7rn) -- w20(ao) + w_(ao) can be V-stable and generally stable.

The function v22(ao) does not depend on Ap and PA. Thus, at fixed ambient conditions,

and known drag coefficient, K_, the zeros of this function, apo,, depend only on the acoustic

91



frequencyand the accommodationcoefficient,apo, = apo, (w,8). The function W2(a0, _ + 7rn)
depends on the same parameters as well as on/kp and PA. For the zeros of this function we have

a_,ol = a_ol (w, 8,/kp, PA). Consider the following three cases showing qualitatively different results

about the roots a,ot.

a. Saturated Liquids

In this case the ambient pressure corresponds to the saturation line, and /kp = 0. Two roots

of equation W2 (a0, _ + _'n) = 0 appear only if the amplitude of the acoustic field exceeds the

threshold of vapor cavitation PA > PA. (w,8) (Figure IX-l). The value of PA. (co,8) can be found

by excluding ao from the simultaneous conditions:

7r

w (o.o, + PA, ,8) = O, OPA(o.o,CO,8)= O. (IX-I)

Curves ao "- a_,oz(w, 8, O, PA. (co, 8) ) determine a region where stable bubble volume oscillation

can exist. Projection of this regions onto the (a, w) plane for water for the value 8 = 0.04 is shown

in Figure IX-2a. It is interesting to note that the regions of A-stability and V-stability in the

computed cases do not intersect. In other words, for/kp = 0, water vapor bubbles at 100°C are

unstable in any acoustic field. Unfortunately we cannot prove this observation for other substances

or for water in other conditions because of the high dimension of the parametric space.

Figure IX-3 demonstrates phase trajectories of the dynamical system (V-18) computed at PA >

PA. (w, 8)- The phase portrait is periodic with the period equal to half the acoustic wavelength.

The figure plots only one period. All trajectories end at a0 = 0, despite the existence of regions

of bubble growth. However, all growing bubbles finally move toward the pressure node, where the

acoustic field cannot support the bubble growth and the bubble collapses. Note that only bubbles

exceeding a critical size can grow near the pressure antinode.

There exists a possibility for bubble average radius oscillations (spiral trajectories). The mech-

anism of such oscillations is the following. A bubble growing near the pressure antinode is forced

to move towards the pressure node. Them, the local amplitude of acoustic pressure is lower and

it collapses. At smaller sizes the direction of the acoustic radiation force changes and the bubble

moves back toward the pressure antinode where it can grow again and repeat the cycle. However,

our analysis shows that these oscillations are unstable and the bubble will always collapse. Note

that such oscillations can occur in both superheated and subcooled liquids. An example of the

oscillating average bubble size behavior is shown in Figure IX-6.

b. Superheated Liquids

This case corresponds to Ap < 0. Any bubble exceeding the critical size he, Eq.(III-36), will grow

even in the absence of the acoustic field. In contrast to the previous case, now three roots of

equation W_(a0, _ + _rn) -- 0 can exist (see Figure IX-lb). This determines two branches of the

curve ao = a,,ol (w, 8, Ap, PA. (co, _, /Xp) ) bounding the region of V-stability. Threshold values for

PA. (w,_, Ap) are determined by Eq.(IX-1). Projection of this region onto (a,w) plane for water

at/kp = -0.0t atm and fl -- 0.04 is shown in Figure IX-2b. As in the previous case the regions
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of A-stability and V-stability for water vapor bubblesat 100°Cdo not intersectand, therefore,
bubblesareunstablein superheatedliquids in any acousticfield.

Figure IX-4 displays the phasetrajectoriesof the dynamicalsystem(V-18). All trajectories
either end at a0 = 0, or grow unlimitedly corresponding to bubble growth due to the liquid

superheat. Figure IX-7 illustrates the dynamics of two bubbles with the same initial position in

the wave, but slightly different initial sizes near the critical size ae. Both of them move relatively

quickly towards the pressure antinode (the x-coordinates of the centers in these cases practically

coincide). At the antinode the smaller bubble collapses, while the larger bubble grows. This is

determined by the bubble size with respect to ae at the moment of reaching the pressure antinode

of the standing wave.

c. Subcooled Liquids

In this case /kp > 0. The intriguing feature of this case is the possibility of existence of four

roots of the equation W2(a0, _ + 7rn) = 0 (Figure IX-la). This determines three branches of

curve ao - av,_ (w,_,/kp, PA, (w,_, Ap)) bounding two regions of V-stability. Projections of these

regions onto the (a, w) plane for water at/kp = 0.02 atm and _ = 0.04 and fl = 1 are shown in

Figure IX-2c. It is seen that an intersection of the regions of stability exists, which provides both

A- and V-stability. Therefore, in subcooled liquids vapor bubbles can be stabilized by an acoustic

field. However, we should notice that the amplitude of this field is constrained by two similar

values of PA, corresponding to the maximum and minimum of the function PA (a0). For example,

in the case shown in Figure IX-la at/Xp = 0.02 atm, the bubble can be stabilized in a narrow

range of amplitudes 0.0885 atm < P,4 < 0.0892 atm. The range can be wider at different ambient

conditions or for substances other than water.

The region of stability occurs at relatively low frequencies, when the primary resonance radius

and the condensation-evaporation (or 'second'; Marston, 1979; Hao and Prosperetti, 1999) reso-

nance radius are substantially separated. The stabilization occurs near the second resonance. Note

that Marston and Greene (1978) observed stable bubble oscillations in subcooled liquid helium

and explained them as an effect of the second resonance.

Figure IX-5 shows phase trajectories of the dynamical system (V-18) in the neighborhood of

the stable state. All trajectories from the attraction region end at the point corresponding to the

stable state. Note that this region is limited and is relatively wide for bubble size and relatively

narrow for bubble position. Therefore, to obtain stable oscillations the bubble should be initially

situated cIose to the pressure antinode of the acoustic wave. The process of stabilization of bubble

size and position is shown in Figure IX-8 for two bubbles with initial sizes smaller and larger than

the stable radius and the same initial position. An interesting feature is that the bubble of the

larger initial size contracts below the stable radius and then expands. This is consistent with the

phase trajectories of Figure IX-5.

2. Effects of Gravity

According to F_xI.(V-18), gravity influences the bubble growth rate and the average translational

velocity. However, the effect of gravity on bubble growth rate is rather small (if it is taken into
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Figure IX-l: The amplitudes of 1 kHz and 100 kHz isotropic acoustic fields at which a bubble can

experience steady (stable or unstable) oscillations for water at _ = 0.04 and T = 373 K.

account just in the last term of Eq.(III-4)). The most important effect is destabilization of the
bubble position.

As an example of destabilization, Figures IX-9-IX-10 show phase trajectories of system (V-18)

at various levels of gravity. In zero gravityconditions the system has a stable state (Figure IX-5).

If some level of gravity is imposed the equilibrium position shifts from the pressure antinode. The

larger gravity is, the larger is this shift. This takes place until some threshold value of gravity

corresponding to reaching the boundary of the attracting region. For gravity higher than this

threshold, the steady state solution longer exist. Figure IX-11 demonstrates the bubble dynamics

in subcooled liquids.

It is interesting that gravity can turn unstable oscillations of average bubble size and position

into stable oscillations. In zero gravity the system has unstable equilibrium points (see Figure IX-

2a). For increasing magnitude of gravity (Figures IX-12-IX-14), the two illustrated equilibrium

points are not symmetric, and a limit cycle appears near the left equilibrium point. However,

further increase of gravity up to one g destabilizes this limit cycle. Figure IX-15 demonstrates the

bubble dynamics in saturated liquids. The stable oscillations of the average bubble radius and

coordinate of the center can also be observed in subcooled and superheated liquids.

Figures IX-16-IX-17 present computaions of the mean bubble radius and position for different

values of the accommodation coefficient and different levels of" gravity for all other parameters

fixed. It is seen that the measurements of the accommodation coefficient can be performed at

zero gravity, reduced gravity, and normal gravity conditions. However, for each level of gravity

there exist specific patterns or regimes of bubble dynamics which should be taken into account in

selection of optimal conditions for measurement of the accommodation coefficient.
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Chapter X.

Conclusions

Our s_udy conducted t2zing analy'_Jcal and numerical methods shows that the kinetics of phase

transitions can affect the dynamics of vapor and vapor-gas bubbles over a broad range of frequen-

cies arid bubble sizes. For water at atmospheric pressure, the frequency range 1-100 kHz and the

bubble size range 10 _m -10 mm were investigated. During the study several important physical

effects were uncovered, including

• Strong influence of the kinetics of phase transitions on the vapor temperature,

• Influence of the kinetics of phase transitions on the dynamics of vapor-gas bubbles with

substantial inert gas content,

• Influence of the Soref,-Dufour effect on bubble resonance oscillations,

• Memory-type thermal effects in the liquid during rectified heat transfer,

• Effects of slow bubble mean radius/position oscillation and stabilization in standing wave.

These effects can be exploited for proper design of experiments. Such experiments would

be performed prior to finalizing the design of an instrument to investigate practical issues. We

found that there exist optimal superheats, concentrations, frequencies, and mean bubble sizes

which provide the highest sensitivity of: the bubble dynamics _o _he value of: the accommodation

coefficient. This sensitivity can be substantially reduced in conditions that are far from optimal.

The experimental setup should aUow for variation and control of the liquid temperature and the

pressure in the cell. It is also important to select appropriate methods of bubble generation and

measurement of bubble size and position. Depending on the methods employed the optimal ranges

of bubble sizes and acoustic frequencies can be determined for measurement of the accommodation

coefficient. The characteristic acoustic frequency wiIl determine the size of: the setup (Helmholtz

resonator for standing waves), which is also should influenced by the methods of bubble size

and position measurement and bubble generation. The experimental design also account for

variation in the optimal sensitivity of the bubble dynamics with the order of magnitude of the

accommodation coefficient. If/_ is to be measured over a broad range of expected values (say

0.001-1 for water), then this range can be subdivided into several bands (say 0.001-0.01, 0.01-0.1,

and 0.1-1). For each band, an optimal set of conditions can be found.

103





Bibliography

[1] M. VOLMErt, Kinetik der Phasebildung, Dresden-Leipzig: Steinkopff, 1939. (in German)

[2] N.A. GUMEROV, Weakly non-linear oscillations of the radius of a vapour bubble in an acous-

tic field, J. AppL Maths Mechs, 55, 205-211, 1991.

[3] V.A. AKULIOttEV,-Acoustic cavitation in cryogenic and boiling liquids. In: L. van Wijngaar-

den (ed.) Mechanics and Physics of Bubbles in Liquids, Martinus Nijhoff, the Netherlands,
1982.

[4] N.A. GUM:EROV, Determination of the accommodation coefficient using gas/vapor bubble

dynamics in an acoustic field, Proceedings of the ._th Microgravity Fluid Physics and Transport

Phenomena Conference, NASALeRC, Cleveland, OH, 340-345, 1998.

[5] N.A. GUlVI:EROV, Dynamics of vapor bubbles With n0nequilibrium phase transitions in

isotropic acoustic fields, Physics of Fluids, 12(1), 71-88, 2000.

[6] N.A. GUMErtOV, Rectified heat transfer to vapor bubbles in standing acoustic waves, UEF

Conference "Microgravity Fluid Physics and Heat Transfer", HI, USA, September 1999.

[7] N.A. GUMErtOV, Linear oscillations of vapor-gas bubbles with nonequilibrium phase tran-

sitions, J. Acoust. Soc. Am. (submitted February 2000).

[81 K.C. HICKMAN, Maximum evaporation coefficient of water, Chem. Engng Sci., 18, 1442,
1954.

[9] A.F. MILLS& R.A. SEBAN, The condensation coefficient of water, Intl. J. Heat and Mass

Transfer, 37", 1815-1827, 1967.

[10] N. CIaODF_a, J. WARNER & A. GAGIN, A determination of the condensation coefficient of

water from the growth rate of small cloud droplets, J. Atmospheric Sci., 31, 1351-1357, 1974.

[II]D.E. HAGEN, J. SCHMITT, M. TRUEBLOOD, J. CARSTENS, D.R. WHITE, AND D.J.

ALOFS, Condensation coefficientmeasurement forwater inthe UMR cloud simulationcham-

ber, d. Atmospheric Sci., 46 (6), 803816, 1989.

[12] N.A. GUMEROV, A.I. IVANI)AEV & R.I. NI(_MATULIN, Sound waves in monodisperse gas-

particle or vapour-droplet mixtures, J. Fluid Mech., 193, 53-74, 1988.

[13] R.. DUItAISWAMI & A. PROSPEtLETTI, Linear pressure waves in fogs, J. Fluid Mech., 299,

187-215, 1995.

[14] N.A. GUMEROV, The weak non-linear fluctuations in the radius of a condensed drop in an

acoustic field, PMM U.S.S.R., 53 (2), 203-211, 1989.

105



[15] V.V. KORNEEV, Possibility of determining the coefficient of condensation of water from

experiments involving laser vaporization, High Temperature, 28 (3), 406, 1990.

[16] G. PICKER &: J. STRAIJB, Interracial mass transfer studies on vapor bubbles in microgravity,

UEF Conference "Microgravity Fluid Physics and Heat Transfer", HI, USA, September 1999.

[17] V.A. AKULICHEV, V.N. ALEKSEEV & V.A. BULANOV, Periodical Phase Transformations

in Liquids, Moscow: Nauka, 1986. (in Russian).

[18] H. HERTZ, Uber die Verdunstung der Flfissigkeiten, Inbesondere des Quecksilbers, im lufteren

Raume, Ann. Phys. 17, 177, 1882.

M. KNUDSEN, Maximum rate of vaporization of mercury, Ann. Phys., 47, 697, 1915.

T. ALTY & C.A. MACKAY, The accommodation and evaporation coefficientof water,

Proc.R. Soc.,A149, 104, 1935.

U. NARASAWA ¢_ G.S. SPRINGER, Measurements of evaporation ratesof water, J.Colloid

InterfaceSci.,50, 392-395, 1975.

R.C.A. BROWN, H.J. HmKE, AND A.H. ROGERS, Ultrasonic helium bubble chamber,

Nature, 220 (5174), 1177-1178, 1968.

V.A. AKULICttEV, V.N. ALEKSEEV, AND K.A. NAUGO_CYKH, Dynamics of vapor bubbles

in liquid-hydrogen ultrasonic bubble chambers, Soy. Phys. Acoust. 17, 302-310, 1972.

R.D. FINCH, R. KAGIWADA, M. BARMATZ, AND I. RUDNICK, Cavitation in liquid helium,

Phys. Rev., 134, A1425-A1428, 1964.

E.A. NEPPIRAS _: R.D. FINCH, Acoustic cavitation in helium, nitrogen, and water at 10

kHz. J. Acoust. Soc. Am., 52, 335-343, 1972.

P.L. MARSTON, Tensile strength and visible ultrasonic cavitation in superfluid 4He, J. Low

Temp. Phys., 25, 383-407, 1976.

A. PROSPERETTI & H.N. O¢]uz, Acoustic behavior of vapor bubbles, Proceedings of the

3rd Microgravity Fluid Physics Conference, NASA LeRC, Cleveland, OH, 159-164, 1996.

V. HARIK, Y. HAO, H.N. O_,uz, AND A. PROSPERETTI, Pressure-radiationforceson

vapor bubbles, Proceedings of the _th Microgravity Fluid Physics and Transport Phenomena

Conference, NASA LeRC, Cleveland, OH, 484-489, 1998.

T. WANG, Effects of evaporation and diffusion on an oscillating bubble, Phys. Fluids, 17,

1121-1126, 1974.

N.S. KHABEEV, Heat transfer and phase transition effects in the oscillation of vapor bubbles,

Soy. Phys. Acoust., 21, 501-505, 1976.

M. FANELLI, A. PROSPERETTI & M. REALI, Radial oscillationsof gas-vapor bubbles in

liquids.Part I:Mathematical formulation,Acustica,47(4),253-265, 1981.

R.D. FINCH & E.A. NEPPIRAS, Vapor bubble dynamics, J. Acoust. Soc. Am., 53, 1402-

1410, 1973.

D.-Y. HSIEH, On oscillationof vapor bubbles, J. Acoust. Soc. Am., 66, 1514-1515, 1979.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[28]

[29]

[30]

[31]

[32]

[33]

106



[34] P.L. MARSTON, Evaporation-condensation resonance frequency of oscillating vapor bubbles,

J. Acoust. Soc. Am., 66, 1516-152t, 1979.

[35] Y. HAO &: A. PROSPERETTI, The dynamics of vapor bubbles in acoustic pressure fields,

Physics of Fluids, 11(8), 2008-2019, 1999.

[36] T.G. WANG, Rectified heat transfer, J. Acoust. Soc. Am., 56, 1131-1143, 1974.

[37] V.N. ALEKSEEV, Nonsteady behavior of a vapor bubble in an ultrasonic field, Soy. Phys.

Acoust., 22, 104-107, 1976.

[38] V.A. AKULICHEV, V.N. ALEKSEEV, AND V.P. YUSHIN, Growth of vapor bubbles in an

ultrasonic field, Soy. Phys. Acoust., 25, 453-457, 1979.

G.M. PATEL, R.E. NICHOLAS, AND R.D. FINCH, Rectified heat transfer in vapor bubbles,

J. Acoust. Soc. Am., 78, 2122-2131, 1985.

P.L. MARSTON _ D.B. GREENE, Stabl.e microscopic bubbles in helium-I and evaporation-

condensation resonance, J. Acoust. Soc. Am., 64, 319-321, 1978.

N.A. GUMEROV, The heat and mass transfer of a vapor bubble with translatory motion at

high Nusselt numbers, Int. J. Mult_phase Flow., 22 (2), 259-272, 1996.

D. LEGENDRE, J. BOREE & J. MAGNAUDET, Thermal and dynamic evolution of a spherical

bubble moving steadily in a superheated or subcooled liquid, Fluid Physics, i0 (6), I256-1272,
1998.

G.L. CHAHINE i: H.L. LIu, Theory of the growth of a bubble cluster in a superheated

liquid, J. Fluid Mech. 156, 257-279, 1985.

K. OHSAKA & E.H. TRINI_, A two-frequency acoustic technique for bubble resonant oscil-

lation studies, J. Acoust. Soc. Am. 107(3), 1346-1351, 2000.

Z.C. FENG & L.G. LEAL, Bifurcation and chaos in shape and volume oscillations of a

periodically driven bubble with two-to-one internal resonance, J. Fluid Mech., 266, 209-242,
1994.

N.A. GUMEItOV, Effect of acoustic radiation on the stability of spherical bubble oscillations,

Physics of Fluids, 10(7), 1767-1768, 1998.

Y. HAO & A. PrtOSPERaTn, The effect of viscosity on the spherical stability of oscillating

gas bubbles, Physics o/Fluids, 11(6), 1309-1317, 1999.

E.H. TmNH, D.B. THIESSEN, AND R.G. HOLT, Driven and freely decaying nonlinear shape

oscillations of drops and bubbles immersed in a liquid: experimental results, J. Fluid Mech.,

364, 253-272, 1998.

D.V. LYUBIMOV, A.A. CHErU_PANOV, T.P. LYUBIMOVA & B. Koux, Deformation of gas

or drop inclusion in high frequency vibrational field, Microgravity Quarterly, 6(2-3), 69-73,
1996.

D.V. LYUBIMOV, A.A. CHEREPANOV, T.P. LYUBIMOVA, D. BEYSENS, B. Roux _: S.

MERADJI, Behavior of isolated bubble (or drop) in oscillating liquid, Proceedings of the 3rd

International Conference on Multiphase Flow, Lyon, France, June 1998.

[39]

[40]

[41]

I 2]

[44]

[45]

[46]

[4s]

[49]

[50]

107



[5I] L.A. CRUM, Bjerknes forces on bubbles in a stationary sound field, J. Acoust. Soc. Am., 57,

1363-1370, 1975.

[52] J.S. SITTER, T.J. SNYDER, J.N. CHUNG, AND P.L. MARSTON, Acoustic field interaction

with a boiling system under terrestrial gravity and microgravity, J. Acoust. Soc. Am., 104,

2561-2569, 1998.

[53] T.J. ASAKI, P.L. MARSTON, AND E.H. TPdNH, Shape oscillations of bubbles in water

driven by modulated ultrasonic radiation pressure: Observations and detection with scattered

laser light, J. Acoust. Soc. Am., 93, 706-713, 1993.

[54] I. AKHATOV, R. METTIN, C.D. OHL, U. PARLITZ, AND W. LAUTERBORN, Bjerknes force

threshold for stable single bubble sonoluminescence, Physical Rev. E, 55, 3747-3750, 1997.

R.G. HOLT & L.A. CRUM, Acoustically forced oscillations of air-bubbles in water: Experi-

mental results, J. Acoust. Soc. Am., 91, 1924-1932, 1992.

L.D. LANDAU & E.M. LIFSHITZ, Fluid Mechanics, Pergamon Press, New-York, 1986.

A. PROSPERETTI, The thermal behaviour of oscillating gas bubbles, J. Fluid Mechh. 222,

587-616, 1991.

L.I. SF_,DOV, Mechanics of Continuous Media, Nauka, Moscow, 1976.

R.I. NIGMATULIN, Dynamics of Multiphase Media, Vol. 1., Hemisphere, Washington, 1991.

S. SOCHARD, A.M. WILHELM, AND H. DELMAS, Bubble dynamics in an acoustic pressure

field including gas-vapour interdittusion, phase changes and Van der Waals equation, Pro-

ceedings of the 3rd International Conference on Multiphase Flow, ICMF'98, Lyon, France,
1998.

R.H. PERRY, D.W. GREEN, AND J.O. MALONEY (EDS.), Perry's Chemical Engineers'

Handbook. 6th ed., p. 17-69, McGraw-Hill, New York, 1984.

S. CHAPMAN & T.G. COWLING, The Mathematical Theory of Non-Uniform Gases, Cam-

bridge University Press, Cambridge, 1970.

R.I. NIGMATULIN & N.S. KHABEEV, Heat exchange between a gas bubble and a liquid,

Fluid Dyn. 9, 759-764, 1974.

M.M. FY_LLAS & A.J. SZEPd, Dissolution or growth of soluble spherical oscillating bubbles,

J. Fluid Mech., 277, 381-407, 1994.

F.B. NAGIEV & N.S. KHABEEV, Heat-transfer and phase-transition effgcts associated with

oscillations of vapor-gas bubbles, Soy. Phys. Acoust., 25(2), 148-152, 1979.

R.I. NIGMATULIN, N.S. KHABEEV, AND F.B. NAGIEV, Dynamics, heat and mass transfer

of vapour-gas bubbles in a liquid, Int. J. Heat Mass Transfer, 24(6), 1033-1044, 1981.

L.G. TKACHEV & V.D. SHESTAKOV, Effect of an ultrasonic field on the behaviour of a

vapor bubble in liquid hydrogen, Soy. Phys. Acoust. 18, 362-368, 1972.

I. AKHATOV, U. PAI_ITZ, AND W. LAUTERBORN, Pattern formation in acoustic cavita-

tion. J. Acoust. Soc. Am., 96, 3627-3635, 1994.

[55]

[56]
[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[68]

108



[69] N.A. GUMEROV, On waves of the self-induced acoustic transparency in mixtures of liquid

and vapor bubbles. S. Morioka FAL. van Wijngaarden (eds.), IUTAM Symposium on Waves

in Liquid/Gas and Liquid/Vapour Two-Phase Systems, Kluwer, the Netherlands, 77-86, 1995.

[70] N.A. GUMEROV, On self-organization of voids in acoustic cavitation. Proceedings of the 3rd

International Conference on Multiphase Flow, IUMF'98, Lyon, France, 1998.

[71] W.H. PRESS, S.A. TEUKOLSKY, W.T. VETTERLING, AND B.P. FLANNERY, Numerical

Recipes in FORTRAN: the Art of Scientific Computing, 2nd ed. Cambridge University Press,

Cambridge, 1992.

109



REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting bur0en for this collection of information is estimated to average 1 hour per response, including the time for rev=ewmg instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED

January 2001 I Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Determination of the Accommodation Coefficient Using Vapor/Gas

Bubble Dynamics in an Acoustic Field

6. AUTHOR(S)

Nail A. Gumerov, Chao-Tsung Hsiao, and Alexei G. Goumilevski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DYNAFLOW, Inc.

7210 Pindell School Road

Fulton, Maryland 20759

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU-101-13-0A--O0

NAS3-98094

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-12538

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR--2001-210572

Technical Report 98001

11. SUPPLEMENTARY NOTES

Project Manager, Dr. Fran Chiaramonte, Microgravity Science Division, NASA Glenn Research Center, organization code

6712, 216--433-8040; and Technical Monitor, Jeff Allen, Microgravity Science Division, NASA Glenn Research Center,

organization code 6712, 216--433-3087.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified- Unlimited

Subject Categories: 34, 77, and 64 Distribution: Nonstandard

Available electronically at http://gltrs._c.nasa.gov/GLTR$

This publication is available from the NASA Center for AeroSpace Information, 301-621-0390.

13. ABSTRACT (Maximum 200 wotcls)

Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such

as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or

"accommodation" coefficient, 13, which is a property of the interface. Existing measurement techniques for 13 are

complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of 13for a

wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic

field strongly depends on the value of 13. It is known that near the saturation temperature, small vapor bubbles grow

under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective

measurement technique of 13. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a

plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental

situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measure-

ment of 13 can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and

conditions which can be efficiently used for measurements of 13. Measurements of 13 can be performed in both reduced

and normal gravity environments.

14. SUBJECT TERMS

Accommodation coefficient; Acoustic excitating bubbles;

Vapor pressure; Microgravity; Liquid-vapor interface

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

123
16. PRICE CODE

A06
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Stcl. Z39-18
298-102






